ON FOUR NEW MOCK THETA FUNCTIONS

被引:1
作者
Hu, Qiuxia [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
关键词
Mock theta functions; divisor sums; basic bilateral hypergeometric series;
D O I
10.4134/BKMS.b190236
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first give some representations for four new mock theta functions defined by Andrews [1] and Bringmann, Hikami and Lovejoy [5] using divisor sums. Then, some transformation and summation formulae for these functions and corresponding bilateral series are derived as special cases of (2)psi(2) series Sigma(n = -infinity) (infinity) (a, c; q)(n) / (b, d; q)(n) z(n) and Ramanujan's sum Sigma(n = -infinity) (infinity) (a; q)(n) / (b; q)(n) z(n).
引用
收藏
页码:345 / 354
页数:10
相关论文
共 13 条
[1]   RAMANUJAN LOST NOTEBOOK .7. THE 6TH ORDER MOCK THETA FUNCTIONS [J].
ANDREWS, GE ;
HICKERSON, D .
ADVANCES IN MATHEMATICS, 1991, 89 (01) :60-105
[2]   q-Orthogonal polynomials, Rogers-Ramanujan identities, and mock theta functions [J].
Andrews, George E. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2012, 276 (01) :21-32
[3]  
Bagis N., 2018, ARXIV180807970V3MATH
[4]  
Bailey W.N., 1950, Q J MATH, V1, P194
[5]   On the modularity of the unified WRT invariants of certain Seifert manifolds [J].
Bringmann, Kathrin ;
Hikami, Kazuhiro ;
Lovejoy, Jeremy .
ADVANCES IN APPLIED MATHEMATICS, 2011, 46 (1-4) :86-93
[6]   Tenth order mock theta functions in Ramanujan's lost notebook [J].
Choi, YS .
INVENTIONES MATHEMATICAE, 1999, 136 (03) :497-569
[7]   Some eighth order mock theta functions [J].
Gordon, B ;
McIntosh, RJ .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 :321-335
[8]   Transformation formula of the "second" order mock theta function [J].
Hikami, K .
LETTERS IN MATHEMATICAL PHYSICS, 2006, 75 (01) :93-98
[9]  
Mc Laughlin J., 2017, Springer Proc. Math. Stat., V221, P503
[10]   On three third order mock theta functions and Hecke-type double sums [J].
Mortenson, Eric .
RAMANUJAN JOURNAL, 2013, 30 (02) :279-308