Extracellular vesicles derived from hypoxia-preconditioned olfactory mucosa mesenchymal stem cells enhance angiogenesis via miR-612

被引:108
作者
Ge, Lite [1 ,2 ,3 ]
Xun, Chengfeng [2 ,3 ]
Li, Wenshui [2 ,3 ]
Jin, Shengyu [3 ]
Liu, Zuo [3 ]
Zhuo, Yi [2 ,3 ]
Duan, Da [3 ]
Hu, Zhiping [1 ]
Chen, Ping [2 ]
Lu, Ming [2 ,3 ,4 ]
机构
[1] Cent South Univ, Xiangya Hosp 2, Dept Neurol, Changsha 410011, Peoples R China
[2] Hunan Normal Univ, Coll Life Sci, Natl & Local Joint Engn Lab Anim Peptide Drug Dev, Changsha 410081, Peoples R China
[3] Hunan Normal Univ, Affiliated Hosp 2, Hunan Provinc Key Lab Neurorestoratol, Changsha 410003, Peoples R China
[4] Hunan Normal Univ, Dept Neurosurg, Affiliated Hosp 2, Changsha 410003, Peoples R China
基金
中国国家自然科学基金;
关键词
Olfactory mucosa; Mesenchymal stem cell; Angiogenesis; microRNA; EVs; EXOSOMES; EXPRESSION; P53; BIOGENESIS; MECHANISMS;
D O I
10.1186/s12951-021-01126-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Mesenchymal stem cells (MSCs) play important roles in tissue repair and regeneration, such as the induction of angiogenesis, particularly under hypoxic conditions. However, the molecular mechanisms underlying hypoxic MSC activation remain largely unknown. MSC-derived extracellular vesicles (EVs) are vital mediators of cell-to-cell communication and can be directly utilized as therapeutic agents for tissue repair and regeneration. Here, we explored the effects of EVs from human hypoxic olfactory mucosa MSCs (OM-MSCs) on angiogenesis and its underlying mechanism. EVs were isolated from normoxic (N) OM-MSCs (N-EVs) and hypoxic (H) OM-MSCs (H-EVs) using differential centrifugation and identified by transmission electron microscopy and flow cytometry. In vitro and in vivo, both types of OM-MSCEVs promoted the proliferation, migration, and angiogenic activities of human brain microvascular endothelial cells (HBMECs). In addition, angiogenesis-stimulatory activity in the H-EV group was significantly enhanced compared to the N-EV group. MicroRNA profiling revealed a higher abundance of miR-612 in H-EVs than in N-EVs, while miR-612 inactivation abolished the N-EV treatment benefit. To explore the roles of miR-612, overexpression and knock-down experiments were performed using a mimic and inhibitor or agomir and antagomir of miR-612. The miR-612 target genes were confirmed using the luciferase reporter assay. Gain- and loss-of-function studies allowed the validation of miR-612 (enriched in hypoxic OM-MSC-EVs) as a functional messenger that stimulates angiogenesis and represses the expression of TP53 by targeting its 3'-untranslated region. Further functional assays showed that hypoxic OM-MSC-EVs promote paracrine Hypoxia-inducible factor 1-alpha (HIF-1 alpha)-Vascular endothelial growth factor (VEGF) signaling in HBMECs via the exosomal miR-612-TP53-HIF-1 alpha-VEGF axis. These findings suggest that hypoxic OM-MSC-EVs may represent a promising strategy for ischemic disease by promoting angiogenesis via miR-612 transfer.
引用
收藏
页数:23
相关论文
共 53 条
[1]   Differentiation of human mesenchymal stem cells (MSC) to dopaminergic neurons: A comparison between Wharton's Jelly and olfactory mucosa as sources of MSCs [J].
Afizadeh, Rafieh ;
Bagher, Zohreh ;
Kamrava, Seyed Kamran ;
Falah, Masoumeh ;
Hamidabadi, Hatef Ghasemi ;
Boroujeni, Mahdi Eskandarian ;
Mohammadi, Fatemeh ;
Khodaverdi, Sepideh ;
Zare-Sadeghi, Arash ;
Olya, Arta ;
Komeili, Ali .
JOURNAL OF CHEMICAL NEUROANATOMY, 2019, 96 :126-133
[2]   Hypoxia Conditioned Mesenchymal Stem Cell-Derived Extracellular Vesicles Induce Increased Vascular Tube Formation in vitro [J].
Almeria, Ciarra ;
Weiss, Rene ;
Roy, Michelle ;
Tripisciano, Carla ;
Kasper, Cornelia ;
Weber, Viktoria ;
Egger, Dominik .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7
[3]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[4]   Angiogenesis in life, disease and medicine [J].
Carmeliet, P .
NATURE, 2005, 438 (7070) :932-936
[5]   Ticagrelor Enhances Release of Anti-Hypoxic Cardiac Progenitor Cell-Derived Exosomes Through Increasing Cell Proliferation In Vitro [J].
Casieri, Valentina ;
Matteucci, Marco ;
Pasanisi, Emilio M. ;
Papa, Angela ;
Barile, Lucio ;
Fritsche-Danielson, Regina ;
Lionetti, Vincenzo .
SCIENTIFIC REPORTS, 2020, 10 (01)
[6]   Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis [J].
Chen, Chun-Yuan ;
Rao, Shan-Shan ;
Ren, Lu ;
Hu, Xiong-Ke ;
Tan, Yi-Juan ;
Hu, Yin ;
Luo, Juan ;
Liu, Yi-Wei ;
Yin, Hao ;
Huang, Jie ;
Cao, Jia ;
Wang, Zhen-Xing ;
Liu, Zheng-Zhao ;
Liu, Hao-Ming ;
Tang, Si-Yuan ;
Xu, Ran ;
Xie, Hui .
THERANOSTICS, 2018, 8 (06) :1607-1623
[7]   The Human Nose Harbors a Niche of Olfactory Ectomesenchymal Stem Cells Displaying Neurogenic and Osteogenic Properties [J].
Delorme, Bruno ;
Nivet, Emmanuel ;
Gaillard, Julien ;
Haeupl, Thomas ;
Ringe, Jochen ;
Deveze, Arnaud ;
Magnan, Jacques ;
Sohier, Jerome ;
Khrestchatisky, Michel ;
Roman, Francois S. ;
Charbord, Pierre ;
Sensebe, Luc ;
Layrolle, Pierre ;
Feron, Francois .
STEM CELLS AND DEVELOPMENT, 2010, 19 (06) :853-+
[8]   The life and fate of mesenchymal stem cells [J].
Eggenhofer, Elke ;
Luk, Franka ;
Dahlke, Marc H. ;
Hoogduijn, Martin J. .
FRONTIERS IN IMMUNOLOGY, 2014, 5
[9]   p53 promotes VEGF expression and angiogenesis in the absence of an intact p21-Rb pathway [J].
Farhang Ghahremani, M. ;
Goossens, S. ;
Nittner, D. ;
Bisteau, X. ;
Bartunkova, S. ;
Zwolinska, A. ;
Hulpiau, P. ;
Haigh, K. ;
Haenebalcke, L. ;
Drogat, B. ;
Jochemsen, A. ;
Roger, P. P. ;
Marine, J-C ;
Haigh, J. J. .
CELL DEATH AND DIFFERENTIATION, 2013, 20 (07) :888-897
[10]   Pulmonary Passage is a Major Obstacle for Intravenous Stem Cell Delivery: The Pulmonary First-Pass Effect [J].
Fischer, Uwe M. ;
Harting, Matthew T. ;
Jimenez, Fernando ;
Monzon-Posadas, Werner O. ;
Xue, Hasen ;
Savitz, Sean I. ;
Laine, Glen A. ;
Cox, Charles S., Jr. .
STEM CELLS AND DEVELOPMENT, 2009, 18 (05) :683-691