RANDOM POLYNOMIALS: CENTRAL LIMIT THEOREMS FOR THE REAL ROOTS

被引:11
作者
Nguyen, Oanh [1 ]
Van vu [2 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Yale Univ, Dept Math, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
ZEROS; CLT;
D O I
10.1215/00127094-2020-0089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The number of real roots has been a central subject in the theory of random polynomials and random functions since the fundamental papers of Littlewood, Offord, and Kac in the 1940s. The main task here is to determine the limiting distribution of this random variable. In 1974, Maslova famously proved a central limit theorem (CLT) for the number of real roots of Kac polynomials. It has remained the only limiting theorem available for the number of real roots for more than four decades. In this paper, using a new approach, we derive a general CLT for the number of real roots of a large class of random polynomials with coefficients growing polynomially. Our result both generalizes and strengthens Maslova's theorem.
引用
收藏
页码:3745 / 3813
页数:69
相关论文
共 42 条
[1]   CLT for the zeros of classical random trigonometric polynomials [J].
Azais, Jean-Marc ;
Dalmao, Federico ;
Leon, Jose R. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (02) :804-820
[2]   CLT for crossings of random trigonometric polynomials [J].
Azais, Jean-Marc ;
Leon, Jose R. .
ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18
[3]  
Bharucha-Reid A. T., 1986, Random polynomials. Probability and Mathematical Statistics
[4]  
Billingsley P., 1995, Probability and Measure, V3
[5]  
Boucheron S., 2013, Concentration Inequalities: A Nonasymptotic Theory of Independence
[6]   Asymptotic variance and CLT for the number of zeros of Kostlan Shub Smale random polynomials [J].
Dalmao, Federico .
COMPTES RENDUS MATHEMATIQUE, 2015, 353 (12) :1141-1145
[7]  
Das Minaketan., 1972, J. Indian Math. Soc, V36, P53
[8]   Random polynomials having few or no real zeros [J].
Dembo, A ;
Poonen, B ;
Shao, QM ;
Zeitouni, O .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (04) :857-892
[9]   NO ZERO-CROSSINGS FOR RANDOM POLYNOMIALS AND THE HEAT EQUATION [J].
Dembo, Amir ;
Mukherjee, Sumit .
ANNALS OF PROBABILITY, 2015, 43 (01) :85-118
[10]   ROOTS OF RANDOM POLYNOMIALS WITH COEFFICIENTS OF POLYNOMIAL GROWTH [J].
Do, Yen ;
Oanh Nguyen ;
Vu, Van .
ANNALS OF PROBABILITY, 2018, 46 (05) :2407-2494