A Kernel K-means Clustering Method for Symbolic Interval Data

被引:0
作者
Costa, Anderson F. B. F. [1 ]
Pimentel, Bruno A. [1 ]
de Souza, Renata M. C. R. [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, BR-50740540 Recife, PE, Brazil
来源
2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010 | 2010年
关键词
DISTANCES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel k-means algorithms have recently been shown to perform better than conventional k-means algorithms in unsupervised classification. In this paper we present is an extension of kernel k-means clustering algorithm for symbolic interval data. To evaluate this method, experiments with synthetic and real interval data sets were performed and we have been compared our method with a dynamic clustering algorithm with adaptive distance. The evaluation is based on an external cluster validity index (corrected Rand index) and the overall error rate of classification (OERC). These experiments showed the usefulness of the proposed method and the results indicate that kernel clustering algorithm gives markedly better performance on data sets considered.
引用
收藏
页数:6
相关论文
共 13 条
[1]  
BOCK HH, 2002, COMPUTATION STAT, V15, P203
[2]   Adaptive Hausdorff distances and dynamic clustering of symbolic interval data [J].
de Carvalho, FDT ;
de Souza, RMCR ;
Chavent, M ;
Lechevallier, Y .
PATTERN RECOGNITION LETTERS, 2006, 27 (03) :167-179
[3]   Dynamic clustering for interval data based on L2 distance [J].
de Carvalho, Francisco de A. T. ;
Brito, Paula ;
Bock, Hans-Hermann .
COMPUTATIONAL STATISTICS, 2006, 21 (02) :231-250
[4]   Partitional clustering algorithms for symbolic interval data based on single adaptive distances [J].
De Carvalho, Francisco de A. T. ;
Lechevallier, Yves .
PATTERN RECOGNITION, 2009, 42 (07) :1223-1236
[5]   Clustering of interval data based on city-block distances [J].
de Souza, RMCR ;
de Carvalho, FDT .
PATTERN RECOGNITION LETTERS, 2004, 25 (03) :353-365
[6]  
DESOUZA RMC, 2004, 11 INT C NEUR INF PR, P775
[7]  
Dhillon I.S., 2004, P ACMSIGKDD INT C KN
[8]  
DIDAY E, 2008, DATA ANAL SODAS SOFT
[9]   A survey of kernel and spectral methods for clustering [J].
Filippone, Maurizio ;
Camastra, Francesco ;
Masulli, Francesco ;
Rovetta, Stefano .
PATTERN RECOGNITION, 2008, 41 (01) :176-190
[10]   Mercer kernel-based clustering in feature space [J].
Girolami, M .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2002, 13 (03) :780-784