A fast nonlinear conjugate gradient based method for 3D concentrated frictional contact problems

被引:20
作者
Zhao, Jing [1 ]
Vollebregt, Edwin A. H. [1 ,2 ]
Oosterlee, Cornelis W. [1 ,3 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, NL-2628 CD Delft, Netherlands
[2] VORtech BV, NL-2600 AG Delft, Netherlands
[3] CWI Ctr Math & Comp Sci, NL-1090 GB Amsterdam, Netherlands
关键词
Frictional contact problem; Azimuth angle variables; Active set strategy; Nonlinear conjugate gradient; Preconditioner; Fast Fourier transform; ALGORITHM; SOLVER; 2D;
D O I
10.1016/j.jcp.2015.02.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a fast numerical solver for a nonlinear constrained optimization problem, arising from 3D concentrated frictional shift and rolling contact problems with dry Coulomb friction. The solver combines an active set strategy with a nonlinear conjugate gradient method. One novelty is to consider the tractions of each slip element in a polar coordinate system, using azimuth angles as variables instead of conventional traction variables. The new variables are scaled by the diagonal of the underlying Jacobian. The fast Fourier transform (FFT) technique accelerates all matrix-vector products encountered, exploiting the matrix' Toeplitz structure. Numerical tests demonstrate a significant reduction of the computational time compared to existing solvers for concentrated contact problems. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:86 / 100
页数:15
相关论文
共 39 条
[1]  
Andersson T., 1981, P 3 INT SEM REC ADV
[2]  
[Anonymous], 1992, ART SCI COMPUTING
[3]  
[Anonymous], 1988, Linear Complementarity, Linear and Nonlinear Programming
[4]   A domain decomposition strategy for nonclassical frictional multi-contact problems [J].
Barboteu, M ;
Alart, P ;
Vidrascu, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (37-38) :4785-4803
[5]  
Boyd S., 2004, CONVEX OPTIMIZATION, VFirst, DOI DOI 10.1017/CBO9780511804441
[6]  
Cattaneo C., 1938, RECONDITI DELL ACCAD, V27, P434
[7]   A numerical model for the point contact of dissimilar materials considering tangential tractions [J].
Chen, W. Wayne ;
Wang, Q. Jane .
MECHANICS OF MATERIALS, 2008, 40 (11) :936-948
[8]   A theoretically supported scalable TFETI algorithm for the solution of multibody 3D contact problems with friction [J].
Dostal, Z. ;
Kozubek, T. ;
Markopoulos, A. ;
Brzobohaty, T. ;
Vondrak, V. ;
Horyl, P. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 205 :110-120
[9]   Deterioration mechanisms in the wheel-rail interface with focus on wear prediction: a literature review [J].
Enblom, Roger .
VEHICLE SYSTEM DYNAMICS, 2009, 47 (06) :661-700
[10]   FUNCTION MINIMIZATION BY CONJUGATE GRADIENTS [J].
FLETCHER, R ;
REEVES, CM .
COMPUTER JOURNAL, 1964, 7 (02) :149-&