Perovskite Photovoltaic Devices with Carbon-Based Electrodes Withstanding Reverse-Bias Voltages up to -9 V and Surpassing IEC 61215:2016 International Standard

被引:44
作者
Bogachuk, Dmitry [1 ]
Saddedine, Karima [1 ]
Martineau, David [2 ]
Narbey, Stephanie [2 ]
Verma, Anand [2 ]
Gebhardt, Paul [1 ]
Herterich, Jan P. [1 ,3 ]
Glissmann, Nico [1 ]
Zouhair, Salma [1 ,4 ]
Markert, Jochen [1 ]
Gould, Isaac E. [5 ,6 ]
McGehee, Michael D. [5 ,7 ]
Wuerfel, Uli [1 ,3 ]
Hinsch, Andreas [1 ]
Wagner, Lukas [1 ]
机构
[1] Fraunhofer Inst Solar Energy Syst ISE, Heidenhofstr 2, D-79110 Freiburg, Germany
[2] Solaronix SA, Rue lOuriette 129, CH-1170 Aubonne, Switzerland
[3] Univ Freiburg, Mat Res Ctr FMF, Stefan Meier Str 21, D-79104 Freiburg, Germany
[4] Abdelmalek Essaadi Univ, FSTT, Thin Films & Nanomat Lab, Tangier 90000, Morocco
[5] Natl Renewable Energy Lab, Golden, CO 80401 USA
[6] Univ Colorado, Mat Sci & Engn, Boulder, CO 80309 USA
[7] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
基金
欧盟地平线“2020”;
关键词
degradation; IEC 61215:2016; perovskites; reverse-bias; shading; solar cells; solar modules; METHYLAMMONIUM LEAD IODIDE; LONG-TERM STABILITY; SOLAR-CELLS; HIGH-PERFORMANCE; ION CONDUCTION; TEMPERATURE; EFFICIENT; SIMULATION; IMPACT;
D O I
10.1002/solr.202100527
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
One of the key challenges of perovskite photovoltaics (PV) is the long-term stability. Although efforts are made to improve the lifetime of perovskite PV devices, their degradation under reverse-bias conditions is barely addressed. Herein, perovskite solar cells with carbon-based electrodes are presented which demonstrate superior resilience against reverse-bias-induced degradation. Although their breakdown voltage is identified to be at approximately -3.6 V, cells do not degrade until the applied reverse-bias exceeds -9 V. Two main degradation mechanisms are identified: 1) iodine loss due to hole tunneling into perovskite, which takes place even at low reverse-bias but decomposes the perovskite only after long time durations; and 2) rapid heating at large reverse-bias leading to formation of PbI2, which starts at shunts and then follows the path of the least resistance for the cell current, which is primarily influenced by the electrode sheet resistances. Finally, perovskite solar modules with carbon-based electrodes are demonstrated, which are subjected to a "hotspot" test described in the IEC 61215:2016 international standard at an accredited module testing laboratory. Passing this accelerated test for the first time confirms the superior stability of perovskite PV devices with carbon-based electrodes and highlights their large industrialization potential.
引用
收藏
页数:11
相关论文
共 60 条
  • [1] Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%
    Arora, Neha
    Dar, M. Ibrahim
    Hinderhofer, Alexander
    Pellet, Norman
    Schreiber, Frank
    Zakeeruddin, Shaik Mohammed
    Graetzel, Michael
    [J]. SCIENCE, 2017, 358 (6364) : 768 - 771
  • [2] Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers
    Bella, Federico
    Griffini, Gianmarco
    Correa-Baena, Juan-Pablo
    Saracco, Guido
    Gratzel, Michael
    Hagfeldt, Anders
    Turri, Stefano
    Gerbaldi, Claudio
    [J]. SCIENCE, 2016, 354 (6309) : 203 - 206
  • [3] Mobile Ion Concentration Measurement and Open-Access Band Diagram Simulation Platform for Halide Perovskite Solar Cells
    Bertoluzzi, Luca
    Boyd, Caleb C.
    Rolston, Nicholas
    Xu, Jixian
    Prasanna, Rohit
    O'Regan, Brian C.
    McGehee, Michael D.
    [J]. JOULE, 2020, 4 (01) : 109 - 127
  • [4] COMPUTER-SIMULATION OF THE EFFECTS OF ELECTRICAL MISMATCHES IN PHOTOVOLTAIC CELL INTERCONNECTION CIRCUITS
    BISHOP, JW
    [J]. SOLAR CELLS, 1988, 25 (01): : 73 - 89
  • [5] Comparison of highly conductive natural and synthetic graphites for electrodes in perovskite solar cells
    Bogachuk, Dmitry
    Tsuji, Ryuki
    Martineau, David
    Narbey, Stephanie
    Herterich, Jan P.
    Wagner, Lukas
    Suginuma, Kumiko
    Ito, Seigo
    Hinsch, Andreas
    [J]. CARBON, 2021, 178 : 10 - 18
  • [6] Low-temperature carbon-based electrodes in perovskite solar cells
    Bogachuk, Dmitry
    Zouhair, Salma
    Wojciechowski, Konrad
    Yang, Bowen
    Babu, Vivek
    Wagner, Lukas
    Xu, Bo
    Lim, Jaekeun
    Mastroianni, Simone
    Pettersson, Henrik
    Hagfeldt, Anders
    Hinsch, Andreas
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (11) : 3880 - 3916
  • [7] Reverse Bias Behavior of Halide Perovskite Solar Cells
    Bowring, Andrea R.
    Bertoluzzi, Luca
    O'Regan, Brian C.
    McGehee, Michael D.
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (08)
  • [8] Understanding junction breakdown in multicrystalline solar cells
    Breitenstein, Otwin
    Bauer, Jan
    Bothe, Karsten
    Kwapil, Wolfram
    Lausch, Dominik
    Rau, Uwe
    Schmidt, Jan
    Schneemann, Matthias
    Schubert, Martin C.
    Wagner, Jan-Martin
    Warta, Wilhelm
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
  • [9] Cheacharoen R, 2018, WORL CON PHOTOVOLT E, P3498, DOI 10.1109/PVSC.2018.8547430
  • [10] Encapsulating perovskite solar cells to withstand damp heat and thermal cycling
    Cheacharoen, Rongrong
    Boyd, Caleb C.
    Burkhard, George F.
    Leijtens, Tomas
    Raiford, James A.
    Bush, Kevin A.
    Bent, Stacey F.
    McGehee, Michael D.
    [J]. SUSTAINABLE ENERGY & FUELS, 2018, 2 (11): : 2398 - 2406