Quantum integrals of motion for variable quadratic Hamiltonians

被引:42
作者
Cordero-Soto, Ricardo [2 ]
Suazo, Erwin [3 ]
Suslov, Sergei K. [1 ,2 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
[2] Arizona State Univ, Math Computat & Modeling Sci Ctr, Tempe, AZ 85287 USA
[3] Univ Puerto Rico, Dept Math Sci, Mayaguez, PR 00681 USA
基金
美国国家科学基金会;
关键词
The time dependent Schrodinger equation; Cauchy initial value problem; Green function; Propagator; Quantum damped oscillators; Caldirola-Kanai Hamiltonians; Quantum integrals of motion; Lewis-Riesenfeld dynamical invariant; Ermakov s equation; Ehrenfest s theorem; DEPENDENT HARMONIC-OSCILLATOR; NONLINEAR SCHRODINGER-EQUATIONS; COHERENT STATES; CHARGED-PARTICLE; WAVE-FUNCTIONS; ADIABATIC INVARIANTS; BERRY PHASE; SYSTEMS; QUANTIZATION; EVOLUTION;
D O I
10.1016/j.aop.2010.02.020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time dependent Schrodinger equation with variable quadratic Hamiltonians An extension of the Lewis-Riesenfeld dynamical invariant is given The time evolution of the expectation values of the energy-related positive operators is determined for the oscillators under consideration A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application (C) 2010 Elsevier Inc All rights reserved
引用
收藏
页码:1884 / 1912
页数:29
相关论文
共 50 条
  • [31] Quantum Monte Carlo Calculations in Solids with Downfolded Hamiltonians
    Ma, Fengjie
    Purwanto, Wirawan
    Zhang, Shiwei
    Krakauer, Henry
    PHYSICAL REVIEW LETTERS, 2015, 114 (22)
  • [32] Analytically Solvable Quantum Hamiltonians and Relations to Orthogonal Polynomials
    Regniers, G.
    Van der Jeugt, J.
    LIE THEORY AND ITS APPLICATIONS IN PHYSICS, 2010, 1243 : 99 - 114
  • [33] Local Commuting Projector Hamiltonians and the Quantum Hall Effect
    Kapustin, Anton
    Fidkowski, Lukasz
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 373 (02) : 763 - 769
  • [34] Quantum adiabatic protocols using emergent local Hamiltonians
    Modak, Ranjan
    Vidmar, Lev
    Rigol, Marcos
    PHYSICAL REVIEW E, 2017, 96 (04)
  • [35] Linear Quantum Entropy and Non-Hermitian Hamiltonians
    Sergi, Alessandro
    Giaquinta, Paolo V.
    ENTROPY, 2016, 18 (12):
  • [36] PT-symmetric Hamiltonians and their application in quantum information
    Croke, Sarah
    PHYSICAL REVIEW A, 2015, 91 (05)
  • [37] Revisiting semiconductor bulk hamiltonians using quantum computers
    Pimenta, Raphael Cesar de Souza
    Bezerra, Anibal Thiago
    PHYSICA SCRIPTA, 2023, 98 (04)
  • [38] Quantum integrals from coalgebra structure
    Post, S.
    Riglioni, D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (07)
  • [39] Integrals of the motion and Green function for dual damped oscillators and coupled harmonic oscillators
    Pepore, Surarit
    REVISTA MEXICANA DE FISICA, 2018, 64 (02) : 150 - 157
  • [40] THE MOTION OF AN UNCHARGED RELATIVISTIC PARTICLE: AN ANALYSIS OF ITS INTEGRABLE MOTION INTEGRALS DYNAMICS
    Akintsov, N. S.
    Nevecheria, A. P.
    Martynov, A. A.
    ST PETERSBURG POLYTECHNIC UNIVERSITY JOURNAL-PHYSICS AND MATHEMATICS, 2023, 16 (02): : 132 - 145