Quantum integrals of motion for variable quadratic Hamiltonians

被引:42
作者
Cordero-Soto, Ricardo [2 ]
Suazo, Erwin [3 ]
Suslov, Sergei K. [1 ,2 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
[2] Arizona State Univ, Math Computat & Modeling Sci Ctr, Tempe, AZ 85287 USA
[3] Univ Puerto Rico, Dept Math Sci, Mayaguez, PR 00681 USA
基金
美国国家科学基金会;
关键词
The time dependent Schrodinger equation; Cauchy initial value problem; Green function; Propagator; Quantum damped oscillators; Caldirola-Kanai Hamiltonians; Quantum integrals of motion; Lewis-Riesenfeld dynamical invariant; Ermakov s equation; Ehrenfest s theorem; DEPENDENT HARMONIC-OSCILLATOR; NONLINEAR SCHRODINGER-EQUATIONS; COHERENT STATES; CHARGED-PARTICLE; WAVE-FUNCTIONS; ADIABATIC INVARIANTS; BERRY PHASE; SYSTEMS; QUANTIZATION; EVOLUTION;
D O I
10.1016/j.aop.2010.02.020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time dependent Schrodinger equation with variable quadratic Hamiltonians An extension of the Lewis-Riesenfeld dynamical invariant is given The time evolution of the expectation values of the energy-related positive operators is determined for the oscillators under consideration A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application (C) 2010 Elsevier Inc All rights reserved
引用
收藏
页码:1884 / 1912
页数:29
相关论文
共 50 条
  • [21] Hyperbolic Deformation on Quantum Lattice Hamiltonians
    Ueda, Hiroshi
    Nishino, Tomotoshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2009, 78 (01)
  • [22] Quantum simulation and spectroscopy of entanglement Hamiltonians
    Dalmonte, M.
    Vermersch, B.
    Zoller, P.
    NATURE PHYSICS, 2018, 14 (08) : 827 - +
  • [23] Time scaling and quantum speed limit in non-Hermitian Hamiltonians
    Impens, F.
    D'Angelis, F. M.
    Pinheiro, F. A.
    Guery-Odelin, D.
    PHYSICAL REVIEW A, 2021, 104 (05)
  • [24] Quantum mechanical uncertainties and exact transition amplitudes for time dependent quadratic Hamiltonian
    Harari, Gal
    Ben-Aryeh, Yacob
    Mann, Ady
    PHYSICA SCRIPTA, 2015, 90 (07)
  • [25] Functional integrals and inequivalent representations in Quantum Field Theory
    Blasone, M.
    Jizba, P.
    Smaldone, L.
    ANNALS OF PHYSICS, 2017, 383 : 207 - 238
  • [26] Geometric Construction of Quantum Hall Clustering Hamiltonians
    Lee, Ching Hua
    Papic, Zlatko
    Thomale, Ronny
    PHYSICAL REVIEW X, 2015, 5 (04):
  • [27] Binary Quantum Control Optimization with Uncertain Hamiltonians
    Fei, Xinyu
    Brady, Lucas T.
    Larson, Jeffrey
    Leyffer, Sven
    Shen, Siqian
    INFORMS JOURNAL ON COMPUTING, 2025, 37 (01) : 86 - 106
  • [28] Creating entanglement using integrals of motion
    Olshanii, Maxim
    Scoquart, Thibault
    Yampolsky, Dmitry
    Dunjko, Vanja
    Jackson, Steven Glenn
    PHYSICAL REVIEW A, 2018, 97 (01)
  • [29] A quadratic time-dependent quantum harmonic oscillator
    Onah, F. E.
    Herrera, E. Garcia
    Ruelas-Galvan, J. A.
    Juarez Rangel, G.
    Real Norzagaray, E.
    Rodriguez-Lara, B. M.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [30] Quantum motion, coherent states and geometric phase of a generalized damped pendulum
    Pedrosa, I. A.
    MODERN PHYSICS LETTERS A, 2021, 36 (12)