Quantum integrals of motion for variable quadratic Hamiltonians

被引:42
作者
Cordero-Soto, Ricardo [2 ]
Suazo, Erwin [3 ]
Suslov, Sergei K. [1 ,2 ]
机构
[1] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
[2] Arizona State Univ, Math Computat & Modeling Sci Ctr, Tempe, AZ 85287 USA
[3] Univ Puerto Rico, Dept Math Sci, Mayaguez, PR 00681 USA
基金
美国国家科学基金会;
关键词
The time dependent Schrodinger equation; Cauchy initial value problem; Green function; Propagator; Quantum damped oscillators; Caldirola-Kanai Hamiltonians; Quantum integrals of motion; Lewis-Riesenfeld dynamical invariant; Ermakov s equation; Ehrenfest s theorem; DEPENDENT HARMONIC-OSCILLATOR; NONLINEAR SCHRODINGER-EQUATIONS; COHERENT STATES; CHARGED-PARTICLE; WAVE-FUNCTIONS; ADIABATIC INVARIANTS; BERRY PHASE; SYSTEMS; QUANTIZATION; EVOLUTION;
D O I
10.1016/j.aop.2010.02.020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct integrals of motion for several models of the quantum damped oscillators in a framework of a general approach to the time dependent Schrodinger equation with variable quadratic Hamiltonians An extension of the Lewis-Riesenfeld dynamical invariant is given The time evolution of the expectation values of the energy-related positive operators is determined for the oscillators under consideration A proof of uniqueness of the corresponding Cauchy initial value problem is discussed as an application (C) 2010 Elsevier Inc All rights reserved
引用
收藏
页码:1884 / 1912
页数:29
相关论文
共 50 条
  • [1] Dynamical invariants for variable quadratic Hamiltonians
    Suslov, Sergei K.
    PHYSICA SCRIPTA, 2010, 81 (05)
  • [2] Quadratic integrals of motion for systems of identical particles: The quantum case
    Brihaye, Y
    Gonera, C
    Kosinski, P
    Maslanka, P
    Giller, S
    THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 144 (02) : 1128 - 1131
  • [3] Quadratic Integrals of Motion for Systems of Identical Particles: The Quantum Case
    Y. Brihaye
    C. Gonera
    P. Kosinski
    P. Maslanka
    S. Giller
    Theoretical and Mathematical Physics, 2005, 144 : 1128 - 1131
  • [4] Invariant Quantum States of Quadratic Hamiltonians
    Dodonov, Viktor V.
    ENTROPY, 2021, 23 (05)
  • [5] Bosonic quadratic Hamiltonians
    Derezinski, Jan
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (12)
  • [6] Tomography of Multimode Quantum Systems with Quadratic Hamiltonians and Multivariable Hermite Polynomials
    V. I. Man'ko
    V. A. Sharapov
    E. V. Shchukin
    Journal of Russian Laser Research, 2001, 22 : 410 - 436
  • [7] Entanglement in many-body eigenstates of quantum-chaotic quadratic Hamiltonians
    Lydzba, Patrycja
    Rigol, Marcos
    Vidmar, Lev
    PHYSICAL REVIEW B, 2021, 103 (10)
  • [8] Time evolution of two-dimensional quadratic Hamiltonians: A Lie algebraic approach
    Sandoval-Santana, J. C.
    Ibarra-Sierra, V. G.
    Cardoso, J. L.
    Kunold, A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (04)
  • [9] Coherent states for quadratic Hamiltonians
    Contreras-Astorga, Alonso
    Fernandez C, David J.
    Velazquez, Mercedes
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (03)
  • [10] Coherent States of Systems with Quadratic Hamiltonians
    V. G. Bagrov
    D. M. Gitman
    A. S. Pereira
    Brazilian Journal of Physics, 2015, 45 : 369 - 375