On cubic graphical regular representations of finite simple groups

被引:8
作者
Xia, Binzhou [1 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Cayley graph; Cubic graph; Graphical regular representation; Finite simple groups;
D O I
10.1016/j.jctb.2019.06.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A recent conjecture of the author and Teng Fang states that there are only finitely many finite simple groups with no cubic graphical regular representation. In this paper, we make crucial progress towards this conjecture by giving an affirmative answer for groups of Lie type of large rank. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 15 条
[1]  
Blackburn N., 1982, FINITE GROUPS, VII
[2]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[3]  
Bray JN, 2013, LOND MATH S, V407, P1, DOI 10.1017/CBO9781139192576
[4]  
Burness T. C., 2016, Classical Groups, Derangements and Primes
[5]   On cubic Cayley graphs of finite simple groups [J].
Fang, XG ;
Li, CH ;
Wang, J ;
Xu, MY .
DISCRETE MATHEMATICS, 2002, 244 (1-3) :67-75
[6]  
Godsil C. D., 1983, EUROPEAN J COMBIN, V4, P25, DOI DOI 10.1016/S0195-6698(83)80005-5
[7]  
Godsil C.D., 1981, ALGEBRAIC METHODS GR, V25, P221
[8]  
Hetzel D., 1976, REGULARE GRAPHISCHE
[9]   Generation of finite simple groups by an involution and an element of prime order [J].
King, Carlisle S. H. .
JOURNAL OF ALGEBRA, 2017, 478 :153-173
[10]  
Kleidman P B, 1990, SUBGROUP STRUCTURE F