α-FREDHOLM OPERATORS RELATIVE TO INVARIANT SUBSPACES

被引:0
作者
Sanchez-Perales, S. [1 ]
Palafox, S. [1 ]
Djordjevic, S., V [2 ]
机构
[1] Univ Tecnol Mixteca, Inst Fis & Matemat, Km 2-5 Carretera Acatlima, Oaxaca 69000, Oaxaca, Mexico
[2] Benemerita Univ Autonoma Puebla, Fac Ciencias Fis Matemet, Rio Verde & Av San Claudio, San Manuel 72570, Puebla Pue, Mexico
来源
OPERATORS AND MATRICES | 2019年 / 13卷 / 04期
关键词
alpha-closed subspaces; alpha-Fredholm operators; invariant subspaces;
D O I
10.7153/oam-2019-13-65
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let T be a bounded linear operator on a Hilbert space H and let W be a closed T- invariant subspace of H. Then T has a matrix representation on the space W circle plus W-perpendicular to by T = [GRAPHICS] . In this paper, the relationships between the alpha-Fredholm properties of T and those of the pair of operators A and B are studied.
引用
收藏
页码:921 / 936
页数:16
相关论文
共 14 条
[1]  
Ahues M., 2001, SPECTRAL COMPUTATION
[2]   Some properties of the Wolf and Weyl essential spectra of a sequence of linear operators ν-convergent [J].
Ammar, Aymen .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (02) :424-435
[3]  
[Anonymous], 1974, LECT NOTES PURE APPL
[4]  
Arora Subhash Chander, 2006, [Bulletin of the KMS, 대한수학회보], V43, P715
[5]  
Barnes BA, 2007, ACTA SCI MATH, V73, P237
[6]  
BURLANDO L, 1999, ACTA SCI MATH SZEGED, V65, P217
[7]  
DJORDJEVIC S. V., 2016, ADV PURE MATH, V6, P138
[8]   WEIGHING OPERATOR SPECTRA [J].
EDGAR, G ;
ERNEST, J ;
LEE, SG .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1971, 21 (01) :61-&
[9]  
ERNEST J., 1972, TOHOKU MATH J, V24, P45
[10]   Exactness, Invertibility and the Love Knot [J].
Harte, Robin .
FILOMAT, 2015, 29 (10) :2347-2353