The chiral nano-world: chiroptically active quantum nanostructures

被引:116
作者
Milton, Finn Purcell [1 ,2 ]
Govan, Joseph [1 ,2 ]
Mukhina, Maria V. [3 ]
Gun'ko, Yurii K. [1 ,2 ,3 ]
机构
[1] Univ Dublin, Sch Chem, Trinity Coll, Dublin 2, Ireland
[2] Univ Dublin, CRANN, Trinity Coll, Dublin 2, Ireland
[3] ITMO Univ, St Petersburg 197101, Russia
基金
爱尔兰科学基金会;
关键词
STRESS-INDUCED CYTOTOXICITY; SPLIT-RING RESONATORS; CIRCULAR-DICHROISM; OPTICAL-ACTIVITY; ENANTIOSELECTIVE SYNTHESIS; GOLD NANOCLUSTERS; LIGAND-EXCHANGE; AMINO-ACIDS; DOTS; NANOPARTICLES;
D O I
10.1039/c5nh00072f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Chirality is one of the key factors in molecular recognition, therefore the development of new chiral nanoparticles is of great interest to many fields of scientific endeavour including chemistry, biochemistry, pharmacology and medicine. Knowledge of the fundamental concepts relevant to chirality in nanosystems is also very important for further advancement of nanoscience and nanotechnology in general. Over the past years, the use of stereospecific chiral stabilising molecules has opened a new avenue to the area of nanocrystal research. In this review article we present some recent advances in the development of various chiroptically active quantum nanostructures and discuss the latest progress in various approaches for the preparation of these nanostructures. We also consider the intrinsic chirality in quantum nanostructures due to the presence of chiral defects such as screw dislocations and discuss the structure-property relationship. Furthermore, the corresponding potential applications of these chiral nanomaterials has been analysed for key areas: sensing, cytotoxicity mediation and cell imaging, asymmetric catalysis and enantiomeric separation, circular polarised light emitting devices and spintronics. Finally, we provide an outlook for the future development of chiroptically active quantum nanostructures.
引用
收藏
页码:14 / 26
页数:13
相关论文
共 96 条
[1]   The use of nanocrystals in biological detection [J].
Alivisatos, P .
NATURE BIOTECHNOLOGY, 2004, 22 (01) :47-52
[2]   Challenges for semiconductor spintronics [J].
Awschalom, David D. ;
Flatte, Michael E. .
NATURE PHYSICS, 2007, 3 (03) :153-159
[3]   Modelling metamaterial transmission lines: a review and recent developments [J].
Aznar, F. ;
Gil, M. ;
Bonache, J. ;
Martin, F. .
OPTO-ELECTRONICS REVIEW, 2008, 16 (03) :226-236
[4]   Optical activity in planar chiral metamaterials: Theoretical study [J].
Bai, Benfeng ;
Svirko, Yuri ;
Turunen, Jari ;
Vallius, Tuomas .
PHYSICAL REVIEW A, 2007, 76 (02)
[5]   Mechanism of the large polarization rotation effect in the all-dielectric artificially chiral nanogratings [J].
Bai, Benfeng ;
Konishi, Kuniaki ;
Meng, Xiangfeng ;
Karvinen, Petri ;
Lehmuskero, Anni ;
Kuwata-Gonokami, Makoto ;
Svirko, Yuri ;
Turunen, Jari .
OPTICS EXPRESS, 2009, 17 (02) :688-696
[6]   Giant Optical Activity of Quantum Dots, Rods, and Disks with Screw Dislocations [J].
Baimuratov, Anvar S. ;
Rukhlenko, Ivan D. ;
Noskov, Roman E. ;
Ginzburg, Pavel ;
Gun'ko, Yurii K. ;
Baranov, Alexander V. ;
Fedorov, Anatoly V. .
SCIENTIFIC REPORTS, 2015, 5
[7]   Dislocation-Induced Chirality of Semiconductor Nanocrystals [J].
Baimuratov, Anvar S. ;
Rukhlenko, Ivan D. ;
Gun'ko, Yurii K. ;
Baranov, Alexander V. ;
Fedorov, Anatoly V. .
NANO LETTERS, 2015, 15 (03) :1710-1715
[8]   Emerging strategies in sustainable fine-chemical synthesis: asymmetric catalysis by metal nanoparticles [J].
Barbaro, Pierluigi ;
Dal Santo, Vladimiro ;
Liguori, Francesca .
DALTON TRANSACTIONS, 2010, 39 (36) :8391-8402
[9]   Design of fluorescent materials for chemical sensing [J].
Basabe-Desmonts, Lourdes ;
Reinhoudt, David N. ;
Crego-Calama, Mercedes .
CHEMICAL SOCIETY REVIEWS, 2007, 36 (06) :993-1017
[10]   Local Light-Induced Magnetization Using Nanodots and Chiral Molecules [J].
Ben Dor, Oren ;
Morali, Noam ;
Yochelis, Shira ;
Baczewski, Lech Tomasz ;
Paltiel, Yossi .
NANO LETTERS, 2014, 14 (11) :6042-6049