Design of wavelet transform based electrocardiogram monitoring system

被引:43
作者
Kumar, Ashish [1 ]
Komaragiri, Rama [1 ]
Kumar, Manjeet [1 ]
机构
[1] Bennett Univ, Dept Elect & Commun Engn, Greater Noida 201310, Uttar Pradesh, India
关键词
Cardiovascular disease; Electrocardiogram; MIT-BIH database; Discrete wavelet transform; Wavelet filter bank; Run-length encoding (RLE); ECG ACQUISITION SOC; QRS DETECTION; DETECTION ALGORITHM; DATA-COMPRESSION; SIGNAL; IMPLEMENTATION; DETECTOR; FILTER; POWER;
D O I
10.1016/j.isatra.2018.08.003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The new age advancements in information technology due to materials and integrated circuit (IC) technologies and their applications in biomedical sciences have made the healthcare facilities more compact and affordable for the aging population. Market trends in healthcare and related devices indicate a sharp rise in their demand Hence the researchers have converged the efforts on designing more smart and advanced medical devices using IC technology. Among these devices, cardiac pacemakers have become a recurrent biomedical device which is engrafted in the human body to detect and monitor a person's heart beating rate. The data thus generated is processed for various medical usages and devices via wireless methods. Cardiovascular diseases (CVDs) or diseases related to the heart are due to abnormalities or disorders of the heart and blood vessels. Till date, limited literature is available which focuses on a single technique that can perform all of the ECG signal denoising, ECG detection, lossless data compression and wireless transmission. In this work, a joint approach for denoising, detection, compression, and wireless transmission of ECG signal is proposed. The modified biorthogonal wavelet transform is used for denoising, detection and lossless compression of ECG signal. To reduce the circuit complexity, biorthogonal wavelet transform is realized using linear phase structure. Further, it is found in this work that the usage of modified biorthogonal wavelet transform increases the detection accuracy and CR of the proposed design. Also, in this work, the Wi-Fi-based wireless protocol is used for compressed data transmission. The proposed ECG detector achieves the highest sensitivity and positive predictivity of 99.95% and 99.92%, respectively, with the MIT-BIH arrhythmia database. The use of modified biorthogonal 3.1 wavelet transform and run-length encoding (RLE) for the compression of ECG data achieves a higher compression ratio (CR) of 6.271. To justify the effectiveness of the proposed algorithm, which uses modified biorthogonal wavelet 3.1transform, the results are compared with the existing methods, namely, Huffman coding/simple predictor, Huffman coding/adaptive, and slope predictor/fixed length packaging.
引用
收藏
页码:381 / 398
页数:18
相关论文
共 64 条
[1]   ECG beat detection using filter banks [J].
Afonso, VX ;
Tompkins, WJ ;
Nguyen, TQ ;
Luo, S .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1999, 46 (02) :192-202
[2]  
[Anonymous], 2012, IEEE T BIOMED CIRCUI, DOI DOI 10.1109/TBCAS.2012.2188798
[3]  
[Anonymous], IEEE T ENG
[4]  
[Anonymous], IEEE T CIRCUITS CIRC
[5]  
[Anonymous], COMPUT METH PROGR BL
[6]  
[Anonymous], WAVELET THRESHOLDING
[7]  
[Anonymous], 0 83W QRS DETECTION
[8]   Design of minimum multiplier fractional order differentiator based on lattice wave digital filter [J].
Barsainya, Richa ;
Rawat, Tarun Kumar ;
Kumar, Manjeet .
ISA TRANSACTIONS, 2017, 66 :404-413
[9]   Comparative study of algorithms for ECG segmentation [J].
Beraza, Idoia ;
Romero, Inaki .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 34 :166-173
[10]  
Bousseljot R., 1995, NUTZUNG EKG SIGNALDA, V40