The superoxide dismutases of Candida glabrata protect against oxidative damage and are required for lysine biosynthesis, DNA integrity and chronological life survival

被引:25
作者
Briones-Martin-del-Campo, Marcela [1 ]
Orta-Zavalza, Emmanuel [1 ]
Canas-Villamar, Israel [1 ]
Gutierrez-Escobedo, Guadalupe [1 ]
Juarez-Cepeda, Jacqueline [1 ]
Robledo-Marquez, Karina [1 ]
Arroyo-Helguera, Omar [1 ]
Castano, Irene [1 ]
De Las Penas, Alejandro [1 ]
机构
[1] IPICYT, Div Mol Biol, San Luis Potosi 78216, Mexico
来源
MICROBIOLOGY-SGM | 2015年 / 161卷
关键词
SACCHAROMYCES-CEREVISIAE; STRESS-RESPONSE; MUTATION-RATE; FREE-IRON; YEAST; REPAIR; EXPRESSION; BIOLOGY; MUTANT; INACTIVATION;
D O I
10.1099/mic.0.000006
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The fungal pathogen Candida glabrata has a well-defined oxidative stress response, is extremely resistant to oxidative stress and can survive inside phagocytic cells. In order to further our understanding of the oxidative stress response in C. glabrata, we characterized the superoxide dismutases (SODs) Cu,ZnSOD (Sod1) and MnSOD (Sod2). We found that Sod1 is the major contributor to total SOD activity and is present in cytoplasm, whereas Sod2 is a mitochondria! protein. Both SODs played a central role in the oxidative stress response but Sod1 was more important during fermentative growth and Sod2 during respiration and growth in non-fermentable carbon sources. Interestingly, C. glabrata cells lacking both SODs showed auxotrophy for lysine, a high rate of spontaneous mutation and reduced chronological lifespan. Thus, our study reveals that SODs play an important role in metabolism, lysine biosynthesis, DNA protection and aging in C. glabrata.
引用
收藏
页码:300 / 310
页数:11
相关论文
共 64 条
[11]   An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells [J].
Cormack, BP ;
Ghori, N ;
Falkow, S .
SCIENCE, 1999, 285 (5427) :578-582
[12]   Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata [J].
Cuellar-Cruz, Mayra ;
Castano, Irene ;
Arroyo-Helguera, Omar ;
De Las Penas, Alejandro .
MEMORIAS DO INSTITUTO OSWALDO CRUZ, 2009, 104 (04) :649-654
[13]   High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p [J].
Cuellar-Cruz, Mayra ;
Briones-Martin-del-Campo, Marcela ;
Canas-Villamar, Israel ;
Montalvo-Arredondo, Javier ;
Riego-Ruiz, Lina ;
Castano, Irene ;
De Las Penas, Alejandro .
EUKARYOTIC CELL, 2008, 7 (05) :814-825
[14]   Base-excision repair of oxidative DNA damage [J].
David, Sheila S. ;
O'Shea, Valerie L. ;
Kundu, Sucharita .
NATURE, 2007, 447 (7147) :941-950
[15]   Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells [J].
Dukan, S ;
Nyström, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (37) :26027-26032
[16]   The chronological life span of Saccharomyces cerevisiae [J].
Fabrizio, P ;
Longo, VD .
AGING CELL, 2003, 2 (02) :73-81
[17]   OXYGEN-DEPENDENT MUTAGENESIS IN ESCHERICHIA-COLI LACKING SUPEROXIDE-DISMUTASE [J].
FARR, SB ;
DARI, R ;
TOUATI, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (21) :8268-8272
[18]   The fungal α-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate [J].
Fazius, Felicitas ;
Shelest, Ekaterina ;
Gebhardt, Peter ;
Brock, Matthias .
MOLECULAR MICROBIOLOGY, 2012, 86 (06) :1508-1530
[19]   Molecular evolution and structure-function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases [J].
Fink, RC ;
Scandalios, JG .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2002, 399 (01) :19-36
[20]  
FLINT DH, 1993, J BIOL CHEM, V268, P22369