Long term cycling studies of electrospun TiO2 nanostructures and their composites with MWCNTs for rechargeable Li-ion batteries

被引:120
作者
Zhu, Peining [1 ,2 ]
Wu, Yongzhi [2 ,3 ,4 ]
Reddy, M. V. [4 ]
Nair, A. Sreekumaran [2 ]
Chowdari, B. V. R. [4 ]
Ramakrishna, S. [1 ,2 ,3 ,5 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, Singapore 117574, Singapore
[2] Natl Univ Singapore, Healthcare & Energy Mat Lab, Nanosci & Nanotechnol Initiat, Singapore 117581, Singapore
[3] NUS Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore
[4] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[5] King Saud Univ, Riyadh 11451, Saudi Arabia
关键词
POLYMER PRECURSOR METHOD; MOLTEN-SALT SYNTHESIS; CARBON NANOTUBES; NANOFIBERS; ANATASE; PERFORMANCE; INSERTION; RUTILE; NANOCOMPOSITES; REACTIVITY;
D O I
10.1039/c1ra00514f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanofiber- and rice grain-shaped TiO2 nanostructures and their composites with functionalized multiwalled carbon nanotubes were fabricated by electrospinning and subsequent sintering process for applications in Lithium ion batteries. The fabricated nanostructures were characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning-and transmission electron microscopy and surface area measurements. All nanostructured materials showed average discharge-charge plateaux of 1.75 to 1.95V. The nanofibrous- and rice grain-shaped TiO2 nanomaterials showed stable performances of 136 (+/- 3) mAh g(-1) and 140 (+/- 3) mAh g(-1), respectively, at the end of 800 cycles in the cycling range of 1.0-2.8 V vs. Li at a current rate of 150 mA g(-1). TiO2-CNT (4 wt.%) composites showed a slightly lower capacity value but better capacity retention (8% capacity loss between 10-800 cycles). We believe that the present long term cycling materials would have wide interests in lithium ion batteries research.
引用
收藏
页码:531 / 537
页数:7
相关论文
共 58 条
[41]  
Reddy M. V., 2011, CHEM REV IN PRESS
[42]   Energy storage studies of bare and doped vanadium pentoxide, (V1.95M0.05)O5, M = Nb, Ta, for lithium ion batteries [J].
Sakunthala, A. ;
Reddy, M. V. ;
Selvasekarapandian, S. ;
Chowdari, B. V. R. ;
Selvin, P. Christopher .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (05) :1712-1725
[43]   Synthesis of compounds, Li(MMn11/6)O4 (M = Mn1/6, Co1/6, (Co1/12Cr1/12), (Co1/12Al1/12), (Cr1/12Al1/12)) by polymer precursor method and its electrochemical performance for lithium-ion batteries [J].
Sakunthala, A. ;
Reddy, M. V. ;
Selvasekarapandian, S. ;
Chowdari, B. V. R. ;
Selvin, P. Christopher .
ELECTROCHIMICA ACTA, 2010, 55 (15) :4441-4450
[44]   Mesoporous TiO2 with high packing density for superior lithium storage [J].
Saravanan, Kuppan ;
Ananthanarayanan, Krishnamoorthy ;
Balaya, Palani .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (07) :939-948
[45]   Storage performance of LiFePO4 nanoplates [J].
Saravanan, Kuppan ;
Reddy, M. V. ;
Balaya, Palani ;
Gong, Hao ;
Chowdari, B. V. R. ;
Vittal, Jagadese J. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (05) :605-610
[46]   Efficient photovoltaic device fashioned of highly aligned multilayers of electrospun TiO2 nanowire array with conjugated polymer [J].
Shim, Hee-Sang ;
Na, Seok-In ;
Nam, Sang Hoon ;
Ahn, Hyo-Jin ;
Kim, Hae Jin ;
Kim, Dong-Yu ;
Kim, Won Bae .
APPLIED PHYSICS LETTERS, 2008, 92 (18)
[47]   Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries [J].
Shim, Hyun-Woo ;
Lee, Duk Kyu ;
Cho, In-Sun ;
Hong, Kug Sun ;
Kim, Dong-Wan .
NANOTECHNOLOGY, 2010, 21 (25)
[48]   In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold [J].
Shin, M ;
Yoshimoto, H ;
Vacanti, JP .
TISSUE ENGINEERING, 2004, 10 (1-2) :33-41
[49]   Nanocrystalline TiO2 (anatase) for Li-ion batteries [J].
Subramanian, V. ;
Karki, A. ;
Gnanasekar, K. I. ;
Eddy, Fannie Posey ;
Rambabu, B. .
JOURNAL OF POWER SOURCES, 2006, 159 (01) :186-192
[50]   Electrochemical lithium reactivity with nanotextured anatase-type TiO2 [J].
Sudant, G ;
Baudrin, E ;
Larcher, D ;
Tarascon, JM .
JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (12) :1263-1269