Long term cycling studies of electrospun TiO2 nanostructures and their composites with MWCNTs for rechargeable Li-ion batteries

被引:120
作者
Zhu, Peining [1 ,2 ]
Wu, Yongzhi [2 ,3 ,4 ]
Reddy, M. V. [4 ]
Nair, A. Sreekumaran [2 ]
Chowdari, B. V. R. [4 ]
Ramakrishna, S. [1 ,2 ,3 ,5 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, Singapore 117574, Singapore
[2] Natl Univ Singapore, Healthcare & Energy Mat Lab, Nanosci & Nanotechnol Initiat, Singapore 117581, Singapore
[3] NUS Grad Sch Integrat Sci & Engn, Singapore 117456, Singapore
[4] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[5] King Saud Univ, Riyadh 11451, Saudi Arabia
关键词
POLYMER PRECURSOR METHOD; MOLTEN-SALT SYNTHESIS; CARBON NANOTUBES; NANOFIBERS; ANATASE; PERFORMANCE; INSERTION; RUTILE; NANOCOMPOSITES; REACTIVITY;
D O I
10.1039/c1ra00514f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nanofiber- and rice grain-shaped TiO2 nanostructures and their composites with functionalized multiwalled carbon nanotubes were fabricated by electrospinning and subsequent sintering process for applications in Lithium ion batteries. The fabricated nanostructures were characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning-and transmission electron microscopy and surface area measurements. All nanostructured materials showed average discharge-charge plateaux of 1.75 to 1.95V. The nanofibrous- and rice grain-shaped TiO2 nanomaterials showed stable performances of 136 (+/- 3) mAh g(-1) and 140 (+/- 3) mAh g(-1), respectively, at the end of 800 cycles in the cycling range of 1.0-2.8 V vs. Li at a current rate of 150 mA g(-1). TiO2-CNT (4 wt.%) composites showed a slightly lower capacity value but better capacity retention (8% capacity loss between 10-800 cycles). We believe that the present long term cycling materials would have wide interests in lithium ion batteries research.
引用
收藏
页码:531 / 537
页数:7
相关论文
共 58 条
[1]   Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature [J].
Baudrin, E. ;
Cassaignon, S. ;
Koesch, M. ;
Jolivet, J. -P. ;
Dupont, L. ;
Tarascon, J. -M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (02) :337-342
[2]   Symbiotic Coaxial Nanocables: Facile Synthesis and an Efficient and Elegant Morphological Solution to the Lithium Storage Problem [J].
Cao, Fei-Fei ;
Guo, Yu-Guo ;
Zheng, Shu-Fa ;
Wu, Xing-Long ;
Jiang, Ling-Yan ;
Bi, Rong-Rong ;
Wan, Li-Jun ;
Maier, Joachim .
CHEMISTRY OF MATERIALS, 2010, 22 (05) :1908-1914
[3]   Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage [J].
Chen, Jun Song ;
Tan, Yi Ling ;
Li, Chang Ming ;
Cheah, Yan Ling ;
Luan, Deyan ;
Madhavi, Srinivasan ;
Boey, Freddy Yin Chiang ;
Archer, Lynden A. ;
Lou, Xiong Wen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (17) :6124-6130
[4]   Anatase TiO2 nanosheet: An ideal host structure for fast and efficient lithium insertion/extraction [J].
Chen, Jun Song ;
Lou, Xiong Wen .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (12) :2332-2335
[5]   The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes [J].
Chen, WX ;
Lee, JY ;
Liu, ZL .
CARBON, 2003, 41 (05) :959-966
[6]   Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties [J].
Dambournet, Damien ;
Belharouak, Ilias ;
Amine, Khalil .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :1173-1179
[7]   Nano-phase tin hollandites, K2(M2Sn6)O16 (M = Co, In) as anodes for Li-ion batteries [J].
Das, B. ;
Reddy, M. V. ;
Rao, G. V. Subba ;
Chowdari, B. V. R. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (04) :1171-1180
[8]   Nanoflake CoN as a high capacity anode for Li-ion batteries [J].
Das, B. ;
Reddy, M. V. ;
Malar, P. ;
Osipowicz, Thomas ;
Rao, G. V. Subba ;
Chowdari, B. V. R. .
SOLID STATE IONICS, 2009, 180 (17-19) :1061-1068
[9]   Electrospinning materials for energy-related applications and devices [J].
Dong, Zexuan ;
Kennedy, Scott J. ;
Wu, Yiquan .
JOURNAL OF POWER SOURCES, 2011, 196 (11) :4886-4904
[10]   Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays [J].
Fang, Hai-Tao ;
Liu, Min ;
Wang, Da-Wei ;
Sun, Tao ;
Guan, Dong-Sheng ;
Li, Feng ;
Zhou, Jigang ;
Sham, Tsun-Kong ;
Cheng, Hui-Ming .
NANOTECHNOLOGY, 2009, 20 (22)