On the prediction performance of the Lasso

被引:97
作者
Dalalyan, Arnak S. [1 ]
Hebiri, Mohamed [2 ]
Lederer, Johannes [3 ]
机构
[1] ENSAE CREST, 3 Ave Pierre Larousse, F-92240 Malakoff, France
[2] Univ Paris Est Marne la Vallee, 5 Blvd Descartes, F-77454 Champs Sur Marne, Marne La Vallee, France
[3] Cornell Univ, 1188 Comstock Hall, Ithaca, NY 14853 USA
基金
瑞士国家科学基金会;
关键词
multiple linear regression; oracle inequalities; sparse recovery; total variation penalty; ORACLE INEQUALITIES; DANTZIG SELECTOR; MODEL SELECTION; OPTIMAL RATES; REGRESSION; AGGREGATION; RECOVERY;
D O I
10.3150/15-BEJ756
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Although the Lasso has been extensively studied, the relationship between its prediction performance and the correlations of the covariates is not fully understood. In this paper, we give new insights into this relationship in the context of multiple linear regression. We show, in particular, that the incorporation of a simple correlation measure into the tuning parameter can lead to a nearly optimal prediction performance of the Lasso even for highly correlated covariates. However, we also reveal that for moderately correlated covariates, the prediction performance of the Lasso can be mediocre irrespective of the choice of the tuning parameter. We finally show that our results also lead to near-optimal rates for the least-squares estimator with total variation penalty.
引用
收藏
页码:552 / 581
页数:30
相关论文
共 42 条
[1]   Transductive versions of the LASSO and the Dantzig Selector [J].
Alquier, Pierre ;
Hebiri, Mohamed .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (09) :2485-2500
[2]  
[Anonymous], 2006, Journal of the Royal Statistical Society, Series B
[3]   Optimization with Sparsity-Inducing Penalties [J].
Bach, Francis ;
Jenatton, Rodolphe ;
Mairal, Julien ;
Obozinski, Guillaume .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 4 (01) :1-106
[4]   PIVOTAL ESTIMATION VIA SQUARE-ROOT LASSO IN NONPARAMETRIC REGRESSION [J].
Belloni, Alexandre ;
Chernozhukov, Victor ;
Wang, Lie .
ANNALS OF STATISTICS, 2014, 42 (02) :757-788
[5]   l1-PENALIZED QUANTILE REGRESSION IN HIGH-DIMENSIONAL SPARSE MODELS [J].
Belloni, Alexandre ;
Chernozhukov, Victor .
ANNALS OF STATISTICS, 2011, 39 (01) :82-130
[6]   SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR [J].
Bickel, Peter J. ;
Ritov, Ya'acov ;
Tsybakov, Alexandre B. .
ANNALS OF STATISTICS, 2009, 37 (04) :1705-1732
[7]   CONSISTENCIES AND RATES OF CONVERGENCE OF JUMP-PENALIZED LEAST SQUARES ESTIMATORS [J].
Boysen, Leif ;
Kempe, Angela ;
Liebscher, Volkmar ;
Munk, Axel ;
Wittich, Olaf .
ANNALS OF STATISTICS, 2009, 37 (01) :157-183
[8]  
Bühlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9
[9]   Sparsity oracle inequalities for the Lasso [J].
Bunea, Florentina ;
Tsybakov, Alexandre ;
Wegkamp, Marten .
ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 :169-194
[10]   Aggregation for gaussian regression [J].
Bunea, Florentina ;
Tsybakov, Alexandre B. ;
Wegkamp, Marten H. .
ANNALS OF STATISTICS, 2007, 35 (04) :1674-1697