An inverse time-dependent source problem for a time-fractional diffusion equation

被引:107
作者
Wei, T. [1 ]
Li, X. L. [1 ]
Li, Y. S. [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
关键词
inverse source problem; fractional diffusion equation; conjugate gradient method; BOUNDARY VALUE METHOD; REGULARIZATION METHOD; CAUCHY-PROBLEM; TRANSPORT; MODEL;
D O I
10.1088/0266-5611/32/8/085003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to identifying a time-dependent source term in a multidimensional time-fractional diffusion equation from boundary Cauchy data. The existence and uniqueness of a strong solution for the corresponding direct problem with homogeneous Neumann boundary condition are firstly proved. We provide the uniqueness and a stability estimate for the inverse time-dependent source problem. Then we use the Tikhonov regularization method to solve the inverse source problem and propose a conjugate gradient algorithm to find a good approximation to the minimizer of the Tikhonov regularization functional. Numerical examples in one-dimensional and two-dimensional cases are provided to show the effectiveness of the proposed method.
引用
收藏
页数:24
相关论文
共 49 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION, DOI DOI 10.1016/S0304-0208(06)80001-0
[2]  
[Anonymous], 1953, Methods of mathematical physics
[3]  
[Anonymous], J ALGERIAN MATH SOC
[4]   Radiogenic Source Identification for the Helium Production-Diffusion Equation [J].
Bao, Gang ;
Ehlers, Todd A. ;
Li, Peijun .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (01) :1-20
[5]   Anomalous transport in laboratory-scale, heterogeneous porous media [J].
Berkowitz, B ;
Scher, H ;
Silliman, SE .
WATER RESOURCES RESEARCH, 2000, 36 (01) :149-158
[6]   Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation [J].
Cheng, Jin ;
Nakagawa, Junichi ;
Yamamoto, Masahiro ;
Yamazaki, Tomohiro .
INVERSE PROBLEMS, 2009, 25 (11)
[7]   Parameter estimation for the generalized fractional element network Zener model based on the Bayesian method [J].
Fan, Wenping ;
Jiang, Xiaoyun ;
Qi, Haitao .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 427 :40-49
[8]  
Hanke M., 1993, Surveys on Mathematics for Industry, V3, P253
[9]  
Hasanov A., 2006, Journal of Inverse and ILL-Posed Problems, V14, P435, DOI 10.1163/156939406778247615
[10]   Fractional cable models for spiny neuronal dendrites [J].
Henry, B. I. ;
Langlands, T. A. M. ;
Wearne, S. L. .
PHYSICAL REVIEW LETTERS, 2008, 100 (12)