Polarization of massive fermions in a vortical fluid

被引:168
作者
Fang, Ren-hong [1 ,2 ]
Pang, Long-gang [3 ]
Wang, Qun [1 ,2 ]
Wang, Xin-nian [4 ,5 ,6 ]
机构
[1] Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Frankfurt Inst Adv Studies, Ruth Moufang Str 1, D-60438 Frankfurt, Germany
[4] Cent China Normal Univ, Key Lab Quark & Lepton Phys MOE, Wuhan 430079, Peoples R China
[5] Cent China Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China
[6] Lawrence Berkeley Natl Lab, Div Nucl Sci, MS 70R0319, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
QUANTUM TRANSPORT-THEORY; SPIN; COLLISIONS;
D O I
10.1103/PhysRevC.94.024904
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
Fermions become polarized in a vortical fluid due to spin-vorticity coupling. Such a polarization can be calculated from the Wigner function in a quantum kinetic approach. By extending previous results for chiral fermions, we derive the Wigner function for massive fermions up to next-to-leading order in spatial gradient expansion. The polarization density of fermions can be calculated from the axial vector component of the Wigner function and is found to be proportional to the local vorticity omega. The polarizations per particle for fermions and antifermions decrease with the chemical potential and increase with energy (mass). Both quantities approach the asymptotic value (h) over bar omega/4 in the large energy (mass) limit. The polarization per particle for fermions is always smaller than that for antifermions, whose ratio of fermions to antifermions also decreases with the chemical potential. The polarization per particle on the Cooper-Frye freeze-out hypersurface can also be formulated and is consistent with the previous result of Becattini et al. [11,27].
引用
收藏
页数:10
相关论文
共 27 条
[1]   Global polarization measurement in Au plus Au collisions [J].
Abelev, B. I. ;
Aggarwal, M. M. ;
Ahammed, Z. ;
Anderson, B. D. ;
Arkhipkin, D. ;
Averichev, G. S. ;
Bai, Y. ;
Balewski, J. ;
Barannikova, O. ;
Barnby, L. S. ;
Baudot, J. ;
Baumgart, S. ;
Belaga, V. V. ;
Bellingeri-Laurikainen, A. ;
Bellwied, R. ;
Benedosso, F. ;
Betts, R. R. ;
Bhardwaj, S. ;
Bhasin, A. ;
Bhati, A. K. ;
Bichsel, H. ;
Bielcik, J. ;
Bielcikova, J. ;
Bland, L. C. ;
Blyth, S.-L. ;
Bombara, M. ;
Bonner, B. E. ;
Botje, M. ;
Bouchet, J. ;
Brandin, A. V. ;
Burton, T. P. ;
Bystersky, M. ;
Cai, X. Z. ;
Caines, H. ;
Sanchez, Calderon de la Barca ;
Callner, J. ;
Catu, O. ;
Cebra, D. ;
Cervantes, M. C. ;
Chajecki, Z. ;
Chaloupka, P. ;
Chattopadhyay, S. ;
Chen, H. F. ;
Chen, J. H. ;
Chen, J. Y. ;
Cheng, J. ;
Cherney, M. ;
Chikanian, A. ;
Christie, W. ;
Chung, S. U. .
PHYSICAL REVIEW C, 2007, 76 (02)
[2]   Relativistic distribution function for particles with spin at local thermodynamical equilibrium [J].
Becattini, F. ;
Chandra, V. ;
Del Zanna, L. ;
Grossi, E. .
ANNALS OF PHYSICS, 2013, 338 :32-49
[3]   Λ polarization in peripheral heavy ion collisions [J].
Becattini, F. ;
Csernai, L. P. ;
Wang, D. J. .
PHYSICAL REVIEW C, 2013, 88 (03)
[4]   Angular momentum conservation in heavy ion collisions at very high energy [J].
Becattini, F. ;
Piccinini, F. ;
Rizzo, J. .
PHYSICAL REVIEW C, 2008, 77 (02)
[5]   Polarization probes of vorticity in heavy ion collisions [J].
Betz, Barbara ;
Gyulassy, Miklos ;
Torrieri, Giorgio .
PHYSICAL REVIEW C, 2007, 76 (04)
[6]   Berry Curvature and Four-Dimensional Monopoles in the Relativistic Chiral Kinetic Equation [J].
Chen, Jiunn-Wei ;
Pu, Shi ;
Wang, Qun ;
Wang, Xin-Nian .
PHYSICAL REVIEW LETTERS, 2013, 110 (26)
[7]   Fluid dynamical prediction of changed v1 flow at energies available at the CERN Large Hadron Collider [J].
Csernai, L. P. ;
Magas, V. K. ;
Stoecker, H. ;
Strottman, D. D. .
PHYSICAL REVIEW C, 2011, 84 (02)
[8]  
Deng J, 2014, PHYS PART NUCLEI+, V45, P73, DOI 10.1134/S1063779614010249
[9]   Vorticity in heavy-ion collisions [J].
Deng, Wei-Tian ;
Huang, Xu-Guang .
PHYSICAL REVIEW C, 2016, 93 (06)
[10]   TRANSPORT-EQUATIONS FOR THE QCD-QUARK WIGNER OPERATOR [J].
ELZE, HT ;
GYULASSY, M ;
VASAK, D .
NUCLEAR PHYSICS B, 1986, 276 (3-4) :706-728