EVALUATING SPARSITY PENALTY FUNCTIONS FOR COMBINED COMPRESSED SENSING AND PARALLEL MRI

被引:0
作者
Weller, Daniel S. [1 ]
Polimeni, Jonathan R. [2 ,3 ]
Grady, Leo [4 ]
Wald, Lawrence L. [2 ,3 ]
Adalsteinsson, Elfar [1 ]
Goyal, Vivek K. [1 ]
机构
[1] MIT, Dept EECS, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Massachusetts Gen Hosp, Dept Radiol, AA Martinos Ctr, Charlestown, MA USA
[3] Harvard Med Sch, Dept Radiol, Boston, MA USA
[4] Siemens Corp Res, Dept Image Analyt & Informat, Princeton, NJ USA
来源
2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO | 2011年
关键词
Compressed sensing; magnetic resonance imaging; image reconstruction; parallel imaging; sparsity penalty functions; ROBUST UNCERTAINTY PRINCIPLES; RECONSTRUCTION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The combination of compressed sensing (CS) and parallel magnetic resonance (MR) imaging enables further scan acceleration via undersampling than previously feasible. While many of these methods incorporate similar styles of CS, there remains significant variation in the particular choice of function used to promote sparsity. Having developed SpRING, a framework for combining CS and GRAPPA, a parallel MR image reconstruction method, we view the choice of penalty function as a design choice rather than a defining feature of the algorithm. For both simulated and real data, we compare different sparsity penalty functions to the empirical distribution of the reference images. Then, we perform reconstructions on uniformly undersampled data using a variety of penalty functions to illustrate the impact appropriately choosing the penalty function has on the performance of SpRING. These experiments demonstrate the importance of choosing an appropriate penalty function and how such a choice may differ between simulated data and real data.
引用
收藏
页码:1589 / 1592
页数:4
相关论文
共 12 条
[1]  
[Anonymous], 2009, P INT SOC MAGN RES M
[2]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[3]   Quantitative robust uncertainty principles and optimally sparse decompositions [J].
Candès, Emmanuel J. ;
Romberg, Justin .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2006, 6 (02) :227-254
[4]   Exact reconstruction of sparse signals via nonconvex minimization [J].
Chartrand, Rick .
IEEE SIGNAL PROCESSING LETTERS, 2007, 14 (10) :707-710
[5]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[6]  
Grady LJ, 2009, 17 ANN M ISMRM APR, P2820
[7]   Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) [J].
Griswold, MA ;
Jakob, PM ;
Heidemann, RM ;
Nittka, M ;
Jellus, V ;
Wang, JM ;
Kiefer, B ;
Haase, A .
MAGNETIC RESONANCE IN MEDICINE, 2002, 47 (06) :1202-1210
[8]   Sparse MRI: The application of compressed sensing for rapid MR imaging [J].
Lustig, Michael ;
Donoho, David ;
Pauly, John M. .
MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (06) :1182-1195
[9]   THE NMR PHASED-ARRAY [J].
ROEMER, PB ;
EDELSTEIN, WA ;
HAYES, CE ;
SOUZA, SP ;
MUELLER, OM .
MAGNETIC RESONANCE IN MEDICINE, 1990, 16 (02) :192-225
[10]   Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic l0-Minimization [J].
Trzasko, Joshua ;
Manduca, Armando .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (01) :106-121