Human motion-driven self-powered stretchable sensing platform based on laser-induced graphene foams

被引:141
作者
Zhang, Cheng [1 ,2 ]
Chen, Huamin [1 ,3 ]
Ding, Xiaohong [1 ,2 ]
Lorestani, Farnaz [2 ]
Huang, Chunlei [1 ]
Zhang, Bingwen [1 ]
Zheng, Biao [1 ]
Wang, Jun [1 ]
Cheng, Huanyu [1 ]
Xu, Yun [3 ]
机构
[1] Minjiang Univ, Coll Mat & Chem Engn, Fujian Key Lab Funct Marine Sensing Mat, Fuzhou 350108, Peoples R China
[2] Penn State Univ, Mat Res Inst, Dept Engn Sci & Mech, University Pk, PA 16802 USA
[3] Chinese Acad Sci, Inst Semicond, Beijing Key Lab Inorgan Stretchable & Flexible In, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 美国国家卫生研究院; 美国国家科学基金会;
关键词
TRIBOELECTRIC NANOGENERATOR; IN-SITU; ENERGY; SUPERCAPACITORS; ELECTRONICS; MNO2; SKIN;
D O I
10.1063/5.0077667
中图分类号
O59 [应用物理学];
学科分类号
摘要
Practical applications of next-generation stretchable electronics hinge on the development of sustained power supplies to drive highly sensitive on-skin sensors and wireless transmission modules. Although the manufacture of stretchable self-charging power units has been demonstrated by integrating stretchable energy harvesters and power management circuits with energy storage units, they often suffer from low and unstable output power especially under mechanical deformation and human movements, as well as complex and expensive fabrication processes. This work presents a low-cost, scalable, and facile manufacturing approach based on laser-induced graphene foams to yield a self-powered wireless sensing platform. 3D porous foams with high specific surface area and excellent charge transport provide an efficient flow of triboelectric electrons in triboelectric nanogenerators. The surface coating or doping with second laser irradiation on these foams can also form a 3D composite to provide high energy density in micro-supercapacitor arrays. The integration of a triboelectric nanogenerator and power management circuits with micro-supercapacitor arrays can efficiently harvest intermittent mechanical energy from body movements into stable power output. 3D foams and their composites patterned into various geometries conveniently create various deformable sensors on large scale at low cost. The generated stable, yet high, power with adjustable voltage and current outputs drives various stretchable sensors and wireless transmission modules to wirelessly measure pulse, strain, temperature, electrocardiogram, blood pressure, and blood oxygen. The self-powered, wireless, wearable sensing platform paves the way to wirelessly detect clinically relevant biophysical and biochemical signals for early disease diagnostics and healthy aging.
引用
收藏
页数:13
相关论文
共 40 条
[1]   A multiple laser-induced hybrid electrode for flexible triboelectric nanogenerators [J].
Chen, Huamin ;
Yang, Wei ;
Huang, Peiyu ;
Li, Chenyu ;
Yang, Yaqian ;
Zheng, Biao ;
Zhang, Cheng ;
Liu, Ruping ;
Li, Yuliang ;
Xu, Yun ;
Wang, Jun ;
Li, Zhou .
SUSTAINABLE ENERGY & FUELS, 2021, 5 (14) :3737-3743
[2]   Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructure [J].
Chen, Huamin ;
Xu, Yun ;
Zhang, Jiushuang ;
Wu, Weitong ;
Song, Guofeng .
NANO ENERGY, 2019, 58 :304-311
[3]   Wearable and robust triboelectric nanogenerator based on crumpled gold films [J].
Chen, Huamin ;
Bai, Lin ;
Li, Tong ;
Zhao, Chen ;
Zhang, Jiushuang ;
Zhang, Nan ;
Song, Guofeng ;
Gan, Qiaoqiang ;
Xu, Yun .
NANO ENERGY, 2018, 46 :73-80
[4]   Self-powered modulation of elastomeric optical grating by using triboelectric nanogenerator [J].
Chen, Xiangyu ;
Wu, Yali ;
Yu, Aifang ;
Xu, Liang ;
Zheng, Li ;
Liu, Yongsheng ;
Li, Hexing ;
Wang, Zhong Lin .
NANO ENERGY, 2017, 38 :91-100
[5]   Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care [J].
Chung, Ha Uk ;
Kim, Bong Hoon ;
Lee, Jong Yoon ;
Lee, Jungyup ;
Xie, Zhaoqian ;
Ibler, Erin M. ;
Lee, KunHyuck ;
Banks, Anthony ;
Jeong, Ji Yoon ;
Kim, Jongwon ;
Ogle, Christopher ;
Grande, Dominic ;
Yu, Yongjoon ;
Jang, Hokyung ;
Assem, Pourya ;
Ryu, Dennis ;
Kwak, Jean Won ;
Namkoong, Myeong ;
Park, Jun Bin ;
Lee, Yechan ;
Kim, Do Hoon ;
Ryu, Arin ;
Jeong, Jaeseok ;
You, Kevin ;
Ji, Bowen ;
Liu, Zhuangjian ;
Huo, Qingze ;
Feng, Xue ;
Deng, Yujun ;
Xu, Yeshou ;
Jang, Kyung-In ;
Kim, Jeonghyun ;
Zhang, Yihui ;
Ghaffari, Roozbeh ;
Rand, Casey M. ;
Schau, Molly ;
Hamvas, Aaron ;
Weese-Mayer, Debra E. ;
Huang, Yonggang ;
Lee, Seung Min ;
Lee, Chi Hwan ;
Shanbhag, Naresh R. ;
Paller, Amy S. ;
Xu, Shuai ;
Rogers, John A. .
SCIENCE, 2019, 363 (6430) :947-+
[6]   Biomechanical energy harvesting: Generating electricity during walking with minimal user effort [J].
Donelan, J. M. ;
Li, Q. ;
Naing, V. ;
Hoffer, J. A. ;
Weber, D. J. ;
Kuo, A. D. .
SCIENCE, 2008, 319 (5864) :807-810
[7]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[8]   Triboelectric Generators and Sensors for Self-Powered Wearable Electronics [J].
Ha, Minjeong ;
Park, Jonghwa ;
Lee, Youngoh ;
Ko, Hyunhyub .
ACS NANO, 2015, 9 (04) :3421-3427
[9]   Wearable biosensors for healthcare monitoring [J].
Kim, Jayoung ;
Campbell, Alan S. ;
de Avila, Berta Esteban-Fernandez ;
Wang, Joseph .
NATURE BIOTECHNOLOGY, 2019, 37 (04) :389-406
[10]   Harvesting energy by improving the economy of human walking [J].
Kuo, AD .
SCIENCE, 2005, 309 (5741) :1686-1687