On classification of n-Lie algebras

被引:41
作者
Bai, Ruipu [1 ]
Song, Guojie [1 ]
Zhang, Yaozhong [2 ]
机构
[1] Hebei Univ, Coll Math & Comp Sci, Baoding 071002, Peoples R China
[2] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
n-Lie algebra; classification; multiplication table;
D O I
10.1007/s11464-011-0107-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the isomorphic criterion theorem for (n + 2)-dimensional n-Lie algebras, and give a complete classification of (n + 2)-dimensional n-Lie algebras over an algebraically closed field of characteristic zero.
引用
收藏
页码:581 / 606
页数:26
相关论文
共 27 条
[21]  
NAGY P, ARXIV07121398MATHDG
[22]   GENERALIZED HAMILTONIAN DYNAMICS [J].
NAMBU, Y .
PHYSICAL REVIEW D, 1973, 7 (08) :2405-2412
[23]   On the structure of k-Lie algebras [J].
Papadopoulos, G. .
CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (14)
[24]   M2-branes, 3-Lie algebras and Plucker relations [J].
Papadopoulos, G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (05)
[25]   Simple quotient algebras and subalgebras of Jacobian algebras [J].
Pozhidaev, AP .
SIBERIAN MATHEMATICAL JOURNAL, 1998, 39 (03) :512-517
[26]   Two classes of central simple n-Lie algebras [J].
Pozhidaev, AP .
SIBERIAN MATHEMATICAL JOURNAL, 1999, 40 (06) :1112-1118
[27]   ON FOUNDATION OF THE GENERALIZED NAMBU MECHANICS [J].
TAKHTAJAN, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 160 (02) :295-315