Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications

被引:197
作者
Lafdi, K. [1 ]
Mesalhy, O. [1 ]
Elyafy, A. [1 ]
机构
[1] Univ Dayton, Dayton, OH 45469 USA
关键词
D O I
10.1016/j.carbon.2007.11.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, a numerical study is proposed to investigate and predict the thermal performance of graphite foams infiltrated with phase change materials, PCMs, for space and terrestrial energy storage systems. The numerical model is based on a volume averaging technique while a finite volume method has been used to discretize the heat diffusion equation. A line-by-line solver based on tri-diagonal matrix algorithm has been used to iteratively solve the algebraic discretization equations. Because of the high thermal conductivity of graphite foams, the PCM-foam system thermal performance has been improved significantly For space applications, the average value of the output power of the new energy storage system has been increased by more than eight times. While for terrestrial applications, the average output power using carbon foam of porosity 97% is about five times greater than that for using pure PCM. Published by Elsevier Ltd.
引用
收藏
页码:159 / 168
页数:10
相关论文
共 25 条