Machine learning line bundle connections

被引:5
作者
Ashmore, Anthony [1 ,2 ]
Deen, Rehan [3 ]
He, Yang-Hui [4 ,5 ,6 ,7 ]
Ovrut, Burt A. [8 ]
机构
[1] Univ Chicago, Kadanoff Ctr Theoret Phys, Chicago, IL 60637 USA
[2] Sorbonne Univ, CNRS, LPTHE, F-75005 Paris, France
[3] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England
[4] Royal Inst Great Britain, London Inst Math Sci, London W1S 4BS, England
[5] Univ London, Dept Math, London EC1V0HB, England
[6] Univ Oxford, Merton Coll, Oxford OX1 4JD, England
[7] NanKai Univ, Sch Phys, Tianjin 300071, Peoples R China
[8] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA
基金
欧盟地平线“2020”;
关键词
Yang-Mills; Machine learning; Connections; 3-GENERATION SUPERSTRING MODEL; YANG-MILLS CONNECTIONS; MINI-LANDSCAPE; METRICS; VACUA;
D O I
10.1016/j.physletb.2022.136972
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the use of machine learning for finding numerical hermitian Yang-Mills connections on line bundles over Calabi-Yau manifolds. Defining an appropriate loss function and focusing on the examples of an elliptic curve, a K3 surface and a quintic threefold, we show that neural networks can be trained to give a close approximation to hermitian Yang-Mills connections. (C) 2022 The Author(s). Published by Elsevier B.V.& nbsp;
引用
收藏
页数:9
相关论文
共 57 条
[21]   The MSSM spectrum from (0,2)-deformations of the heterotic standard embedding [J].
Braun, Volker ;
Candelas, Philip ;
Davies, Rhys ;
Donagi, Ron .
JOURNAL OF HIGH ENERGY PHYSICS, 2012, (05)
[22]   Eigenvalues and eigenfunctions of the scalar Laplace operator on Calabi-Yau manifolds [J].
Braun, Volker ;
Brelidze, Tamaz ;
Douglas, Michael R. ;
Ovrut, Burt A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (07)
[23]   Calabi-Yau metrics for quotients and complete intersections [J].
Braun, Volker ;
Brelidze, Tamaz ;
Douglas, Michael R. ;
Ovrut, Burt A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (05)
[24]   The exact MSSM spectrum from string theory [J].
Braun, Volker ;
He, Yang-Hui ;
Ovrut, Burt A. ;
Pantev, Tony .
JOURNAL OF HIGH ENERGY PHYSICS, 2006, (05)
[25]  
Candelas P, 2008, ADV THEOR MATH PHYS, V12, P429
[26]  
Donagi R., 2002, ADV THEOR MATH PHYS, V5, P93
[27]  
Donagi R., 2001, Adv. Theor. Math. Phys., V5, P563, DOI DOI 10.4310/ATMP.2001.V5.N3.A5
[28]  
Donaldson S. K., ARXIVMATH0512625
[29]  
DONALDSON SK, 1985, P LOND MATH SOC, V50, P1
[30]  
Douglas M.R., ARXIV201204797