Multiscale model reduction for shale gas transport in a coupled discrete fracture and dual-continuum porous media

被引:47
作者
Akkutlu, I. Yucel [1 ]
Efendiev, Yalchin [2 ]
Vasilyeva, Maria [3 ,4 ]
Wang, Yuhe [5 ]
机构
[1] Texas A&M Univ, Dept Petr Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] North Eastern Fed Univ, Inst Math & Informat, Dept Computat Technol, Yakutsk 677980, Republic Of Sak, Russia
[4] Texas A&M Univ, Inst Sci Computat, College Stn, TX 77843 USA
[5] Texas A&M Univ Qatar, Dept Petr Engn, Doha, Qatar
基金
俄罗斯基础研究基金会; 美国国家科学基金会;
关键词
FINITE-ELEMENT METHODS; NUMERICAL-SIMULATION; FLOW; RESERVOIRS; POROSITY; PERMEABILITY; MECHANISMS; KEROGEN; MATRIX;
D O I
10.1016/j.jngse.2017.02.040
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Natural gas production from shale formations involves highly complex geological features consisting of fractures that are embedded spatially-distributed in a matrix made of organic and inorganic materials. In this paper, we develop a coupled multiscale and multi-continuum approach for simulating gas transport in the shale formation. The multiscale method allowed us to capture detailed interactions between the fractures and the background. For the fine-scale heterogeneities involving organic and inorganic materials distribution in the matrix, we use a dual-continuum approach. The matrix is coupled to the fractures by use of the Generalized Multiscale Finite Element Method (GMsFEM). In our previous work (Akkutlu et al., 2016), we used a single-continuum background coupled to the fracture network. This paper presents a significant extension and considers dual-continuum media as a background. GMsFEM systematically identifies the fracture networks by constructing corresponding multiscale basis functions. GMsFEM also accurately represents the fractures interacting with the background media. Moreover, GMsFEM can handle any spatial fracture distributions and thus, it avoids the limitations of the multi-continuum approaches. Results show that the proposed numerical approach can accurately capture the interactions between the fractures and the multi-continuum model using a few multiscale basis functions. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:65 / 76
页数:12
相关论文
共 36 条
[1]   Multiscale model reduction for shale gas transport in fractured media [J].
Akkutlu, I. Y. ;
Efendiev, Yalchin ;
Vasilyeva, Maria .
COMPUTATIONAL GEOSCIENCES, 2016, 20 (05) :953-973
[2]   Multi-scale Asymptotic Analysis of Gas Transport in Shale Matrix [J].
Akkutlu, I. Yucel ;
Efendiev, Yalchin ;
Savatorova, Viktoria .
TRANSPORT IN POROUS MEDIA, 2015, 107 (01) :235-260
[3]   Multiscale Gas Transport in Shales With Local Kerogen Heterogeneities [J].
Akkutlu, I. Yucel ;
Fathi, Ebrahim .
SPE JOURNAL, 2012, 17 (04) :1002-1011
[4]  
Barenblatt G.E., 1960, J APPL MATH USSR, V24, P12861303, DOI [10.1016/0021-8928(60)90107-6, DOI 10.1016/0021-8928(60)90107-6]
[5]   RANDOMIZED OVERSAMPLING FOR GENERALIZED MULTISCALE FINITE ELEMENT METHODS [J].
Calo, Victor M. ;
Efendiev, Yalchin ;
Galvis, Juan ;
Li, Guanglian .
MULTISCALE MODELING & SIMULATION, 2016, 14 (01) :482-501
[6]  
Chai Z., 2016, INT PETR TECHN C INT
[7]  
Chai Z., 2016, SPE ANN TECHN C EXH
[8]   Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods [J].
Chung, Eric ;
Efendiev, Yalchin ;
Hou, Thomas Y. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 320 :69-95
[9]  
Efendiev Y., 2004, COMMUN MATH SCI, V2, P553, DOI [DOI 10.4310/CMS.2004.V2.N4.A2, DOI 10.4310/CMS]
[10]   Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method [J].
Efendiev Y. ;
Lee S. ;
Li G. ;
Yao J. ;
Zhang N. .
GEM - International Journal on Geomathematics, 2015, 6 (02) :141-162