Steiner distance and convexity in graphs

被引:39
作者
Caceres, J. [1 ]
Marquez, A. [2 ]
Puertas, M. L. [1 ]
机构
[1] Univ Almeria, Dept Appl Math & Stat, Almeria, Spain
[2] Univ Seville, Dept Appl Math 1, Seville, Spain
关键词
D O I
10.1016/j.ejc.2007.03.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the Steiner distance to define a convexity in the vertex set of a graph, which has a nice behavior in the well-known class of HHD-free graphs. For this graph class, we prove that any Steiner tree of a vertex set is included into the geodesical convex hull of the set, which extends the well-known fact that the Euclidean convex hull contains at least one Steiner tree for any planar point set. We also characterize the graph class where Steiner convexity becomes a convex geometry, and provide a vertex set that allows us to rebuild any convex set, using convex hull operation, in any graph. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:726 / 736
页数:11
相关论文
共 15 条
[1]  
[Anonymous], 1971, SOV MATH DOKL
[2]  
[Anonymous], SIAM MONOGRAPHS DISC
[3]   Rebuilding convex sets in graphs [J].
Cáceres, J ;
Márquez, A ;
Oellermann, OR ;
Puertas, ML .
DISCRETE MATHEMATICS, 2005, 297 (1-3) :26-37
[4]  
CHARTRAND G, 1989, MATH BOHEM, V144, P399
[5]   Convexity and HHD-free graphs [J].
Dragan, FF ;
Nicolai, F ;
Brandstädt, A .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (01) :119-135
[6]  
ENTRIGER RC, 1977, IEEE T CIRCUITS SYST, V27, P460
[7]   CONVEXITY IN GRAPHS AND HYPERGRAPHS [J].
FARBER, M ;
JAMISON, RE .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1986, 7 (03) :433-444
[8]  
FARBER M, 1985, NETWORKS, V6, P109
[9]   STEINER MINIMAL TREES [J].
GILBERT, EN ;
POLLAK, HO .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1968, 16 (01) :1-&
[10]   STEINER DISTANCE STABLE GRAPHS [J].
GODDARD, W ;
OELLERMANN, OR ;
SWART, HC .
DISCRETE MATHEMATICS, 1994, 132 (1-3) :65-73