Development and internal validation of a diagnostic prediction model for COVID-19 at time of admission to hospital

被引:9
作者
Fink, D. L. [1 ,2 ]
Khan, P. Y. [2 ]
Goldman, N. [3 ]
Cai, J. [1 ]
Hone, L. [3 ]
Mooney, C. [3 ]
El-Shakankery, K. H. [3 ]
Sismey, G. [3 ]
Whitford, V [3 ]
Marks, M. [2 ]
Thomas, S. [1 ,4 ]
机构
[1] Barts Hlth NHS Trust, Dept Infect Dis, Whipps Cross Hosp, London, England
[2] London Sch Hyg & Trop Med, Dept Clin Res, London, England
[3] Barts Hlth NHS Trust, Dept Resp Med, Whipps Cross Hosp, London, England
[4] Barts Hlth NHS Trust, Dept Acute Med, Whipps Cross Hosp, London, England
关键词
INDIVIDUAL PROGNOSIS; TRIPOD;
D O I
10.1093/qjmed/hcaa305
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Early coronavirus disease 2019 (COVID-19) diagnosis prior to laboratory testing results is crucial for infection control in hospitals. Models exist predicting COVID-19 diagnosis, but significant concerns exist regarding methodology and generalizability. Aim: To generate the first COVID-19 diagnosis risk score for use at the time of hospital admission using the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) checklist. Design: A multivariable diagnostic prediction model for COVID-19 using the TRIPOD checklist applied to a large single-centre retrospective observational study of patients with suspected COVID-19. Methods: 581 individuals were admitted with suspected COVID-19; the majority had laboratory-confirmed COVID-19 (420/581, 72.2%). Retrospective collection was performed of electronic clinical records and pathology data. Results: The final multivariable model demonstrated AUC 0.8535 (95% confidence interval 0.8121-0.8950). The final model used six clinical variables that are routinely available in most low and high-resource settings. Using a cut-off of 2, the derived risk score has a sensitivity of 78.1% and specificity of 86.8%. At COVID-19 prevalence of 10% the model has a negative predictive value (NPV) of 96.5%. Conclusions: Our risk score is intended for diagnosis of COVID-19 in individuals admitted to hospital with suspected COVID-19. The score is the first developed for COVID-19 diagnosis using the TRIPOD checklist. It may be effective as a tool to rule out COVID-19 and function at different pandemic phases of variable COVID-19 prevalence. The simple score could be used by any healthcare worker to support hospital infection control prior to laboratory testing results.
引用
收藏
页码:699 / 705
页数:7
相关论文
共 26 条
[1]   Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases [J].
Ai, Tao ;
Yang, Zhenlu ;
Hou, Hongyan ;
Zhan, Chenao ;
Chen, Chong ;
Lv, Wenzhi ;
Tao, Qian ;
Sun, Ziyong ;
Xia, Liming .
RADIOLOGY, 2020, 296 (02) :E32-E40
[2]   Lack of dyspnea in patients with Covid-19: another neurological conundrum? [J].
Bertran Recasens, B. ;
Martinez-Llorens, J. M. ;
Rodriguez-Sevilla, J. J. ;
Rubio, M. A. .
EUROPEAN JOURNAL OF NEUROLOGY, 2020, 27 (09) :E40-E40
[3]  
CDC, 2020, INT GUID HEALTHC PRO
[4]  
Collins GS, 2015, J CLIN EPIDEMIOL, V68, P112, DOI [10.7326/M14-0697, 10.1002/bjs.9736, 10.7326/M14-0698, 10.1016/j.jclinepi.2014.11.010, 10.1111/eci.12376, 10.1038/bjc.2014.639, 10.1186/s12916-014-0241-z, 10.1136/bmj.g7594, 10.1016/j.eururo.2014.11.025]
[5]  
Docherty AB, 2020, medRxiv, DOI [10.1101/2020.04.23.20076042, 10.1101/2020.04.23.20076042v1, DOI 10.1101/2020.04.23.20076042, 10.1101/2020.04.23.20076042thisversion, 10.1101/2020.04.23.20076042]
[6]  
Ensor J., PMCALPLOT STATA MODU
[7]   The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 [J].
Gorbalenya, Alexander E. ;
Baker, Susan C. ;
Baric, Ralph S. ;
de Groot, Raoul J. ;
Drosten, Christian ;
Gulyaeva, Anastasia A. ;
Haagmans, Bart L. ;
Lauber, Chris ;
Leontovich, Andrey M. ;
Neuman, Benjamin W. ;
Penzar, Dmitry ;
Perlman, Stanley ;
Poon, Leo L. M. ;
Samborskiy, Dmitry V. ;
Sidorov, Igor A. ;
Sola, Isabel ;
Ziebuhr, John .
NATURE MICROBIOLOGY, 2020, 5 (04) :536-544
[8]   Clinical Characteristics of Coronavirus Disease 2019 in China [J].
Guan, W. ;
Ni, Z. ;
Hu, Yu ;
Liang, W. ;
Ou, C. ;
He, J. ;
Liu, L. ;
Shan, H. ;
Lei, C. ;
Hui, D. S. C. ;
Du, B. ;
Li, L. ;
Zeng, G. ;
Yuen, K. -Y. ;
Chen, R. ;
Tang, C. ;
Wang, T. ;
Chen, P. ;
Xiang, J. ;
Li, S. ;
Wang, Jin-lin ;
Liang, Z. ;
Peng, Y. ;
Wei, L. ;
Liu, Y. ;
Hu, Ya-hua ;
Peng, P. ;
Wang, Jian-ming ;
Liu, J. ;
Chen, Z. ;
Li, G. ;
Zheng, Z. ;
Qiu, S. ;
Luo, J. ;
Ye, C. ;
Zhu, S. ;
Zhong, N. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (18) :1708-1720
[9]   The continuing evolution of COVID-19 imaging pathways in the UK: a British Society of Thoracic Imaging expert reference group update [J].
Hare, S. S. ;
Rodrigues, J. C. L. ;
Nair, A. ;
Jacob, J. ;
Upile, S. ;
Johnstone, A. ;
Mcstay, R. ;
Edey, A. ;
Robinson, G. .
CLINICAL RADIOLOGY, 2020, 75 (06) :399-404
[10]   Coronavirus Disease19 in Geriatrics and Long-Term Care: An Update [J].
Ouslander, Joseph G. .
JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2020, 68 (05) :918-921