Analysis of mammogram using self-organizing neural networks based on spatial isomorphism

被引:4
作者
Ferreira, Aida A. [1 ]
Nascimento, Francisco, Jr. [1 ]
Tsang, Ing Ren [1 ]
Cavalcanti, George D. C. [1 ]
Ludermir, Teresa B. [1 ]
de Aquino, Ronaldo R. B. [2 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat CIn, POB 7851,Cidade Univ, BR-50740530 Recife, PE, Brazil
[2] Univ Fed Pernambuco, POB 7851,Cidade Univ, BR-50740530 Recife, PE, Brazil
来源
2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6 | 2007年
关键词
D O I
10.1109/IJCNN.2007.4371230
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The correct segmentation and measurement of mammography images is of fundamental importance for the development of automatic or computer-aided cancer detection systems. In this paper we propose a method to segment mammogram image using a self-organizing neural network based on spatial isomorphism. The method used is a modified version of the algorithm proposed by Venkatesh and Rishikesh [1] to extract object boundaries in an image. This model explores the principle of spatial isomorphism and self-organization in order to create flexible contours that characterize shapes in images. We modified the original algorithm to overcame problems of local minimum, poor performance for image object with large concavity and imprecise results when simple or far from object border contour are chosen. A comparison of both algorithm and original segmentation used by the AHAS database [9] is presented.
引用
收藏
页码:1796 / +
页数:2
相关论文
共 16 条
  • [1] Braga AP., 2000, Redes neurais artificiais: teoria e aplicacoes
  • [2] Computer-aided detection and classification of microcalcifications in mammograms: a survey
    Cheng, HD
    Cai, XP
    Chen, XW
    Hu, LM
    Lou, XL
    [J]. PATTERN RECOGNITION, 2003, 36 (12) : 2967 - 2991
  • [3] DURIKOVIC R, 1995, VISUAL COMPUT, V11, P277, DOI 10.1007/BF01898405
  • [4] Analysis of mammogram classification using a wavelet transform decomposition
    Ferreira, CBR
    Borges, DL
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (07) : 973 - 982
  • [5] Haykin S., 1999, Neural networks: a comprehensive foundation, V2nd ed.
  • [6] ISAAC N, 1997, IEEE T INF TECHNOL B, V1, P141
  • [7] JEBAL A, 2003, CA-CANCER J CLIN, V53, P5
  • [8] SNAKES - ACTIVE CONTOUR MODELS
    KASS, M
    WITKIN, A
    TERZOPOULOS, D
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1987, 1 (04) : 321 - 331
  • [9] MURTHY NSG, UNPUB NEURAL COMPUTI
  • [10] SHAHHOSSEINI H, 2002, PATTERN RECOGN, P13361