Multiplicity of Solutions for Fractional-Order Differential Equations via the κ(x)-Laplacian Operator and the Genus Theory

被引:31
作者
Srivastava, Hari M. [1 ,2 ,3 ,4 ]
da Costa Sousa, Jose Vanterler [5 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Azerbaijan Univ, Dept Math & Informat, 71 Jeyhun Hajibeyli St, AZ-1007 Baku, Azerbaijan
[4] Int Telemat Univ Uninettuno, Sect Math, I-00186 Rome, Italy
[5] Fed Univ ABC UFABC, Ctr Math Comp & Cognit, 5001 Bangu, BR-09210580 Santo Andre, SP, Brazil
关键词
fractional differential equations; kappa(x)-Laplacian; chi-Hilfer fractional derivative; existence; multiplicity of solutions; genus theory; Concentration-Compactness Principle; Mountain Pass Theorem; variable exponents; variational methods; P(X)-LAPLACIAN EQUATIONS; CRITICAL GROWTH; EXISTENCE; CALCULUS; FUNCTIONALS; SPACES;
D O I
10.3390/fractalfract6090481
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the existence and multiplicity of solutions for a class of quasi-linear problems involving fractional differential equations in the chi-fractional space H-kappa(x)(gamma,beta,chi)(Delta). Using the Genus Theory, the Concentration-Compactness Principle, and the Mountain Pass Theorem, we show that under certain suitable assumptions the considered problem has at least k pairs of non-trivial solutions.
引用
收藏
页数:27
相关论文
共 55 条
[1]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[2]   Existence of solution for a degenerate p(x)-Laplacian equation in RN [J].
Alves, Claudianor O. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) :731-742
[3]   EXISTENCE OF SOLUTIONS FOR A CLASS OF p(x)-LAPLACIAN EQUATIONS INVOLVING A CONCAVE-CONVEX NONLINEARITY WITH CRITICAL GROWTH IN RN [J].
Alves, Claudianor O. ;
Ferreira, Marcelo C. .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 45 (02) :399-422
[4]   Nonlinear perturbations of a p(x)-Laplacian equation with critical growth in RN [J].
Alves, Claudianor O. ;
Ferreira, Marcelo C. .
MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) :849-868
[5]  
Alves CO, 2010, DIFFER INTEGRAL EQU, V23, P113
[6]  
Antontsev S, 2006, HBK DIFF EQUAT STATI, V3, P1, DOI 10.1016/S1874-5733(06)80005-7
[7]  
Ayazoglu R, 2021, COLLECT MATH, V72, P129, DOI 10.1007/s13348-020-00283-5
[8]   Existence of solutions for p(x)-Laplacian problems on a bounded domain [J].
Chabrowski, J ;
Fu, YQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 306 (02) :604-618
[9]  
Chabrowski J., 1999, Weak Convergence Methods for Semilinear Elliptic Equations, DOI 10.1142/4225
[10]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406