Deep Orthogonal Fusion: Multimodal Prognostic Biomarker Discovery Integrating Radiology, Pathology, Genomic, and Clinical Data

被引:57
作者
Braman, Nathaniel [1 ]
Gordon, Jacob W. H. [1 ]
Goossens, Emery T. [1 ]
Willis, Caleb [1 ]
Stumpe, Martin C. [1 ]
Venkataraman, Jagadish [1 ]
机构
[1] Tempus Labs Inc, Chicago, IL 60654 USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT V | 2021年 / 12905卷
关键词
SURVIVAL; CLASSIFICATION; GLIOBLASTOMA; MRI;
D O I
10.1007/978-3-030-87240-3_64
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clinical decision-making in oncology involves multimodal data such as radiology scans, molecular profiling, histopathology slides, and clinical factors. Despite the importance of these modalities individually, no deep learning framework to date has combined them all to predict patient prognosis. Here, we predict the overall survival (OS) of glioma patients from diverse multimodal data with a Deep Orthogonal Fusion (DOF) model. The model learns to combine information from multiparametric MRI exams, biopsy-based modalities (such as H&E slide images and/or DNA sequencing), and clinical variables into a comprehensive multimodal risk score. Prognostic embeddings from each modality are learned and combined via attention-gated tensor fusion. To maximize the information gleaned from each modality, we introduce a multimodal orthogonalization (MMO) loss term that increases model performance by incentivizing constituent embeddings to be more complementary. DOF predicts OS in glioma patients with a median C-index of 0.788 +/- 0.067, significantly outperforming (p = 0.023) the best performing unimodal model with a median C-index of 0.718 +/- 0.064. The prognostic model significantly stratifies glioma patients by OS within clinical subsets, adding further granularity to prognostic clinical grading and molecular subtyping.
引用
收藏
页码:667 / 677
页数:11
相关论文
共 27 条
[1]   Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Preciction [J].
Bae, Sohi ;
Choi, Yoon Seong ;
Ahn, Sung Soo ;
Chang, Jong Hee ;
Kang, Seok-Gu ;
Kim, Eui Hyun ;
Kim, Se Hoon ;
Lee, Seung-Koo .
RADIOLOGY, 2018, 289 (03) :797-806
[2]   Sexually dimorphic radiogenomic models identify distinct imaging and biological pathways that are prognostic of overall survival in glioblastoma [J].
Beig, Niha ;
Singh, Salendra ;
Bera, Kaustav ;
Prasanna, Prateek ;
Singh, Gagandeep ;
Chen, Jonathan ;
Bamashmos, Anas Saeed ;
Barnett, Addison ;
Hunter, Kyle ;
Statsevych, Volodymyr ;
Hill, Virginia B. ;
Varadan, Vinay ;
Madabhushi, Anant ;
Ahluwalia, Manmeet S. ;
Tiwari, Pallavi .
NEURO-ONCOLOGY, 2021, 23 (02) :251-263
[3]   Radiogenomic-Based Survival Risk Stratification of Tumor Habitat on Gd-T1w MRI Is Associated with Biological Processes in Glioblastoma [J].
Beig, Niha ;
Bera, Kaustav ;
Prasanna, Prateek ;
Antunes, Jacob ;
Correa, Ramon ;
Singh, Salendra ;
Bamashmos, Anas Saeed ;
Ismail, Marwa ;
Braman, Nathaniel ;
Verma, Ruchika ;
Hill, Virginia B. ;
Statsevych, Volodymyr ;
Ahluwalia, Manmeet S. ;
Varadan, Vinay ;
Madabhushi, Anant ;
Tiwari, Pallavi .
CLINICAL CANCER RESEARCH, 2020, 26 (08) :1866-1876
[4]   Deep learning with multimodal representation for pancancer prognosis prediction [J].
Cheerla, Anika ;
Gevaert, Olivier .
BIOINFORMATICS, 2019, 35 (14) :I446-I454
[5]  
Chen R.J., ARXIV191208937CSQBIO
[6]   Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data [J].
Ching, Travers ;
Zhu, Xun ;
Garmire, Lana X. .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (04)
[7]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[8]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[9]   The current state of molecular testing in the treatment of patients with solid tumors, 2019 [J].
El-Deiry, Wafik S. ;
Goldberg, Richard M. ;
Lenz, Heinz-Josef ;
Shields, Anthony F. ;
Gibney, Geoffrey T. ;
Tan, Antoinette R. ;
Brown, Jubilee ;
Eisenberg, Burton ;
Heath, Elisabeth I. ;
Phuphanich, Surasak ;
Kim, Edward ;
Brenner, Andrew J. ;
Marshall, John L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (04) :305-343
[10]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577