Brain Region Segmentation using Convolutional Neural Network

被引:0
作者
Selvathi, D. [1 ]
Vanmathi, T. [1 ]
机构
[1] Mepco Schlenk Engn Coll, Sivakasi, India
来源
2018 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENERGY SYSTEMS (ICEES) | 2018年
关键词
Brain region segmentation; skull stripping; MRI; convolutional neural network;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Brain region segmentation or skull stripping is an essential step in neuroimaging application such as surgical, surface reconstruction, image registration etc. The accuracy of all existing methods depends on the registration and image geometry. When this fails, the probability of success is very less. In order to avoid this, Convolutional Neural Network (CNN) is used. For brain extraction which is free from geometry and registration. CNN learned the connectedness and shape of the brain. OASIS database is used which is publicly available benchmark dataset. In this method, training phase uses 30 images and 10 images are used for testing phase. The performance of CNN results is closer to the ground truth results given by experts.
引用
收藏
页码:661 / 666
页数:6
相关论文
共 12 条
[1]  
[Anonymous], 2014, P WIN CONTR C
[2]   A new similarity measure for non-local means filtering of MRI images [J].
Dolui, Sudipto ;
Kuurstra, Alan ;
Patarroyo, Ivan C. Salgado ;
Michailovich, Oleg V. .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2013, 24 (07) :1040-1054
[3]   Brain tumor segmentation with Deep Neural Networks [J].
Havaei, Mohammad ;
Davy, Axel ;
Warde-Farley, David ;
Biard, Antoine ;
Courville, Aaron ;
Bengio, Yoshua ;
Pal, Chris ;
Jodoin, Pierre-Marc ;
Larochelle, Hugo .
MEDICAL IMAGE ANALYSIS, 2017, 35 :18-31
[4]   Review of MRI-based brain tumor image segmentation using deep learning methods [J].
Isin, Ali ;
Direkoglu, Cem ;
Sah, Melike .
12TH INTERNATIONAL CONFERENCE ON APPLICATION OF FUZZY SYSTEMS AND SOFT COMPUTING, ICAFS 2016, 2016, 102 :317-324
[5]   Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation [J].
Kamnitsas, Konstantinos ;
Ledig, Christian ;
Newcombe, Virginia F. J. ;
Sirnpson, Joanna P. ;
Kane, Andrew D. ;
Menon, David K. ;
Rueckert, Daniel ;
Glocker, Ben .
MEDICAL IMAGE ANALYSIS, 2017, 36 :61-78
[6]   Deep MRI brain extraction: A 3D convolutional neural network for skull stripping [J].
Kleesiek, Jens ;
Urban, Gregor ;
Hubert, Alexander ;
Schwarz, Daniel ;
Maier-Hein, Klaus ;
Bendszus, Martin ;
Biller, Armin .
NEUROIMAGE, 2016, 129 :460-469
[7]   Noise suppression in brain magnetic resonance imaging based on non-local means filter and fuzzy cluster [J].
Liu, Bin ;
Sang, Xinzhu ;
Xing, Shujun ;
Wang, Bo .
OPTIK, 2015, 126 (21) :2955-2959
[8]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[9]  
Pereira Sergio, 2016, IEEE T MED IMAG, V35
[10]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241