The spectral theory of Toeplitz operators applied to approximation problems in Hilbert spaces

被引:6
作者
Smith, M [1 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
关键词
constrained approximation; extremal problems; Toeplitz operators; Hardy spaces; Paley-Wiener spaces; Segal-Bargmann spaces;
D O I
10.1007/s00365-004-0591-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The solution to a particular constrained approximation problem, in an abstract Hilbert space setting, may be interpreted in terms of a generalised Toeplitz operator. We consider concrete versions of this problem, in settings which involve generalised Hardy spaces, Paley-Wiener spaces and the Segal-Bargmann space, and derive spectral representations of the associated Toeplitz operators.
引用
收藏
页码:47 / 65
页数:19
相关论文
共 30 条
[1]   TOEPLITZ OPERATORS IN MULTIPLY CONNECTED REGIONS [J].
ABRAHAMSE, MB .
AMERICAN JOURNAL OF MATHEMATICS, 1974, 96 (02) :261-297
[2]  
ALPAY D, 1993, LECT NOTES CONTR INF, V185, P563
[3]   How can the meromorphic approximation help to solve some 2D inverse problems for the Laplacian? [J].
Baratchart, L ;
Leblond, J ;
Mandréa, F ;
Saff, EB .
INVERSE PROBLEMS, 1999, 15 (01) :79-90
[4]   Problems of Adamjan-Arov-Krein type on subsets of the circle and minimal norm extensions [J].
Baratchart, L ;
Leblond, J ;
Partington, JR .
CONSTRUCTIVE APPROXIMATION, 2000, 16 (03) :333-357
[5]  
Baratchart L, 1996, CONSTR APPROX, V12, P423
[6]   Hardy approximation to Lp functions on subsets of the circle with 1≤p<∞ [J].
Baratchart, L ;
Leblond, J .
CONSTRUCTIVE APPROXIMATION, 1998, 14 (01) :41-56
[7]  
Baratchart L, 2003, INTEGR EQUAT OPER TH, V45, P269, DOI 10.1007/s000200300005
[9]   Line segment crack recovery from incomplete boundary data [J].
Ben Abda, A ;
Kallel, M ;
Leblond, J ;
Marmorat, JP .
INVERSE PROBLEMS, 2002, 18 (04) :1057-1077
[10]   TOEPLITZ-OPERATORS AND QUANTUM-MECHANICS [J].
BERGER, CA ;
COBURN, LA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 68 (03) :273-299