A Global Compactness type result for Palais-Smale sequences in fractional Sobolev spaces

被引:44
作者
Palatucci, Giampiero [1 ,2 ]
Pisante, Adriano [3 ]
机构
[1] Univ Parma, Dipartimento Matemat & Informat, Campus Parco Area Sci 53-A, I-43124 Parma, Italy
[2] SISSA, I-34136 Trieste, Italy
[3] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
Profile decomposition; Global compactness; Fractional Sobolev; Critical Sobolev exponent; EQUATIONS;
D O I
10.1016/j.na.2014.12.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the global compactness result by Struwe (1984) to any fractional Sobolev spaces (H) over dot(s)(Omega), for 0 < s < N/2 and Omega subset of R-N a bounded domain with smooth boundary. The proof is a simple direct consequence of the so- called profile decomposition of Gerard (1998). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 18 条
[1]  
[Anonymous], 2011, CONFLUENTES MATH
[2]  
[Anonymous], 2014, MATHEMATIC
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[5]   Nonexistence results for a class of fractional elliptic boundary value problems [J].
Fall, Mouhamed Moustapha ;
Weth, Tobias .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (08) :2205-2227
[6]  
Franzina G, 2014, RIV MAT UNIV PARMA, V5, P373
[7]   Existence and nonexistence results for critical growth biharmonic elliptic equations [J].
Gazzola, F ;
Grunau, HC ;
Squassina, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 18 (02) :117-143
[8]  
Gerard P., 1998, ESAIM CONTR OPTIM CA, V3, P213
[9]   Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients [J].
Hebey, E ;
Robert, F .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2001, 13 (04) :491-517
[10]   NONLOCAL SELF-IMPROVING PROPERTIES [J].
Kuusi, Tuomo ;
Mingione, Giuseppe ;
Sire, Yannick .
ANALYSIS & PDE, 2015, 8 (01) :57-114