On a planar Choquard equation involving exponential critical growth

被引:6
作者
Carvalho, J. [1 ]
Medeiros, E. [1 ]
Ribeiro, B. [1 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2021年 / 72卷 / 06期
关键词
Choquard equation; Hardy-Littlewood-Sobolev inequality; Weighted Sobolev embedding; Trudinger-Moser inequality; Riesz Potential; NONLINEAR SCHRODINGER-EQUATIONS; GROUND-STATE SOLUTIONS; EXISTENCE;
D O I
10.1007/s00033-021-01617-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a class of planar Choquard equation with Riesz potential of logarithm type and the potential V and the weights K, Q decaying to zero at infinity. We prove a weighted Sobolev embedding and a weighted Trudinger-Moser type inequality using a convenient decomposition. These results allow us to address, via variational methods, the existence of solutions to the Choquard equation when the nonlinearities possess critical exponential growth in the Trudinger-Moser sense.
引用
收藏
页数:19
相关论文
共 28 条
[1]   On a planar non-autonomous Schrodinger-Poisson system involving exponential critical growth [J].
Albuquerque, F. S. ;
Carvalho, J. L. ;
Figueiredo, G. M. ;
Medeiros, E. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (01)
[2]  
Albuquerque FSB, 2021, MILAN J MATH, V89, P263, DOI 10.1007/s00032-021-00334-x
[3]   Existence and concentration of ground state solutions for a critical nonlocal Schrodinger equation in R2 [J].
Alves, Claudianor O. ;
Cassani, Daniele ;
Tarsi, Cristina ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) :1933-1972
[4]  
Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
[5]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[6]   Groundstates of the Choquard equations with a sign-changing self-interaction potential [J].
Battaglia, Luca ;
Van Schaftingen, Jean .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03)
[7]   Existence of Groundstates for a Class of Nonlinear Choquard Equations in the Plane [J].
Battaglia, Luca ;
Van Schaftingen, Jean .
ADVANCED NONLINEAR STUDIES, 2017, 17 (03) :581-594
[8]   The logarithmic Choquard equation: Sharp asymptotes and nondegeneracy of the groundstate [J].
Bonheure, Denis ;
Cingolani, Silvia ;
Van Schaftingen, Jean .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :5255-5281
[9]   NONTRIVIAL SOLUTION OF SEMILINEAR ELLIPTIC EQUATION WITH CRITICAL EXPONENT IN R2 [J].
CAO, DM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (3-4) :407-435
[10]   Schrodinger-Newton equations in dimension two via a Pohozaev-Trudinger log-weighted inequality [J].
Cassani, Daniele ;
Tarsi, Cristina .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (05)