Reiterative Distributional Chaos in Non-autonomous Discrete Systems

被引:2
作者
Yin, Zongbin [1 ]
Xiang, Qiaomin [2 ]
Wu, Xinxing [3 ]
机构
[1] Guangdong Polytech Normal Univ, Sch Math & Syst Sci, Guangzhou 510665, Peoples R China
[2] Foshan Univ, Sch Math & Big Data, Foshan 528000, Peoples R China
[3] Southwest Petr Univ, Sch Sci, Chengdu 610500, Peoples R China
基金
中国国家自然科学基金;
关键词
Reiterative distributional chaos; Distributional chaos; Invariant; Non-autonomous systems; LI-YORKE CHAOS; BACKWARD SHIFT; OPERATORS; INVARIANCE; VERSIONS;
D O I
10.1007/s12346-021-00526-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, several types of reiterative distributional chaos are concerned in discrete dynamical systems. Some implications between distributional chaos and reiterative distributional chaos are obtained. It is further shown that an equicontinuous non-autonomous system (X, f(1), infinity), where f(1,infinity) = {f(i)}(i >= 1) is a sequence of self-maps of a metric space X, exhibits reiterative distributional chaos of type i (i is an element of [1, 1(+), 2, 21/2, 21/2-}) if and only if its kth iteration f(1,infinity)([k]) exhibits reiterative distributional chaos of type i for any k >= 2.
引用
收藏
页数:11
相关论文
共 38 条
[1]   Li-Yorke sensitivity [J].
Akin, E ;
Kolyada, S .
NONLINEARITY, 2003, 16 (04) :1421-1433
[2]   The three versions of distributional chaos [J].
Balibrea, F ;
Smítal, J ;
Stefánková, M .
CHAOS SOLITONS & FRACTALS, 2005, 23 (05) :1581-1583
[3]   Weak mixing and chaos in nonautonomous discrete systems [J].
Balibrea, Francisco ;
Oprocha, Piotr .
APPLIED MATHEMATICS LETTERS, 2012, 25 (08) :1135-1141
[4]   Mean Li-Yorke chaos in Banach spaces [J].
Bernardes, N. C., Jr. ;
Bonilla, A. ;
Peris, A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (03)
[5]   Distributional chaos for operators on Banach spaces [J].
Bernardes, N. C., Jr. ;
Bonilla, A. ;
Peris, A. ;
Wu, X. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (02) :797-821
[6]   Li-Yorke chaos in linear dynamics [J].
Bernardes, N. C., Jr. ;
Bonilla, A. ;
Mueller, V. ;
Peris, A. .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 :1723-1745
[7]   Distributional chaos for linear operators [J].
Bernardes, N. C., Jr. ;
Bonilla, A. ;
Mueller, V. ;
Peris, A. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (09) :2143-2163
[8]   Reiterative Distributional Chaos on Banach Spaces [J].
Bonilla, Antonio ;
Kostic, Marko .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (14)
[9]   Measure-theoretic chaos [J].
Downarowicz, Tomasz ;
Lacroix, Yves .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2014, 34 :110-131
[10]   On a problem of iteration invariants for distributional chaos [J].
Dvorakova, J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) :785-787