Synthesis and Characterization of a Series of Nickel Complexes with Tripodal and Related Ligands: Electroreductive Coupling of Alkynes and Carbon Dioxide

被引:7
作者
Alexopoulou, Konstantina I. [1 ]
Leibold, Michael [2 ]
Walter, Olaf [3 ]
Zevaco, Thomas A. [4 ]
Schindler, Siegfried [1 ]
机构
[1] Justus Liebig Univ Giessen, Inst Anorgan & Analyt Chem, Heinrich Buff Ring 17, D-35392 Giessen, Germany
[2] Univ Kassel Chem, Heinrich Plett Str 40, D-34132 Kassel, Germany
[3] European Commiss, DG Joint ResearchCtr, Directorate Nucl Safety & Secur G, GI Adv Nucl Knowledge 5, POB 2340, D-76125 Karlsruhe, Germany
[4] Inst Katalyseforsch & Technol Bau 727, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
关键词
Nickel; Carbon dioxide; Butadiene; Alkynes; Tripodal ligands; COPPER(II) COMPLEXES; MAGNETIC-PROPERTIES; CO2; RELEVANCE; CATALYSIS; DINUCLEAR; IRON(II); CRYSTAL; ADDUCTS; COBALT;
D O I
10.1002/ejic.201700854
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Nickel(II) complexes of a series of tripodal ligands (and derivatives), for example, [Ni(Me(6)tren)(DMF)](ClO4)(2) [Me(6)tren = tris(2-dimethylaminoethyl)-amine], are prepared and structurally characterized. The complexes are tested for their potential to be used as mediators for electroreductive coupling of butadiene and carbon dioxide. From the whole series, the complex [Ni(Me(5)dien)(DMF)(3)](ClO4)(2) (Me(5)dien = 1,1,4,7,7-pentamethyl-diethylenetriamine) yields the highest amount of 3 hexene-1,6 diacid (HDS), thus leading to the same result as the best nickel complex (with the ligand 2,4,4-trimethyl-1,5,9-triazacyclodecan, N3) so far reported in the literature.
引用
收藏
页码:4722 / 4732
页数:11
相关论文
共 38 条
[1]   SYNTHESIS, STRUCTURE, AND SPECTROSCOPIC PROPERTIES OF COPPER(II) COMPOUNDS CONTAINING NITROGEN SULFUR DONOR LIGANDS - THE CRYSTAL AND MOLECULAR-STRUCTURE OF AQUA[1,7-BIS(N-METHYLBENZIMIDAZOL-2'-YL)-2,6-DITHIAHEPTANE]COPPER(II) PERCHLORATE [J].
ADDISON, AW ;
RAO, TN ;
REEDIJK, J ;
VANRIJN, J ;
VERSCHOOR, GC .
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1984, (07) :1349-1356
[2]   Catalysis research of relevance to carbon management: Progress, challenges, and opportunities [J].
Arakawa, H ;
Aresta, M ;
Armor, JN ;
Barteau, MA ;
Beckman, EJ ;
Bell, AT ;
Bercaw, JE ;
Creutz, C ;
Dinjus, E ;
Dixon, DA ;
Domen, K ;
DuBois, DL ;
Eckert, J ;
Fujita, E ;
Gibson, DH ;
Goddard, WA ;
Goodman, DW ;
Keller, J ;
Kubas, GJ ;
Kung, HH ;
Lyons, JE ;
Manzer, LE ;
Marks, TJ ;
Morokuma, K ;
Nicholas, KM ;
Periana, R ;
Que, L ;
Rostrup-Nielson, J ;
Sachtler, WMH ;
Schmidt, LD ;
Sen, A ;
Somorjai, GA ;
Stair, PC ;
Stults, BR ;
Tumas, W .
CHEMICAL REVIEWS, 2001, 101 (04) :953-996
[3]  
Aresta M., 2016, Reaction Mechanisms in Carbon Dioxide Conversion, V1st, DOI 10.1007/978-3-662-46831-9_7
[4]  
Aresta M., 2010, CARBON DIOXIDE CHEM
[5]   State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: The distinctive contribution of chemical catalysis and biotechnology [J].
Aresta, Michele ;
Dibenedetto, Angela ;
Quaranta, Eugenio .
JOURNAL OF CATALYSIS, 2016, 343 :2-45
[6]  
Becker M, 2000, EUR J INORG CHEM, P719
[7]   Use of carbon dioxide in chemical syntheses via a lactone intermediate [J].
Behr, A. ;
Henze, G. .
GREEN CHEMISTRY, 2011, 13 (01) :25-39
[8]  
Behr A., 1988, CARBON DIOXIDE ACTIV
[9]  
Bringmann J, 2001, APPL ORGANOMET CHEM, V15, P135, DOI 10.1002/1099-0739(200102)15:2<135::AID-AOC108>3.0.CO
[10]  
2-L