Stochastic derivatives for fractional diffusions

被引:4
|
作者
Darses, Sebastien
Nourdin, Ivan
机构
[1] Univ Franche Comte, Math Lab, F-25030 Besancon, France
[2] Univ Paris 06, LPMA, F-75252 Paris 05, France
来源
ANNALS OF PROBABILITY | 2007年 / 35卷 / 05期
关键词
stochastic derivatives; Nelson's derivative; fractional Brownian motion; fractional differential equation; Malliavin calculus;
D O I
10.1214/009117906000001169
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce some fundamental notions related to the so-called stochastic derivatives with respect to a given a-field Q. In our framework, we recall well-known results about Markov-Wiener diffusions. We then focus mainly on the case where X is a fractional diffusion and where 62 is the past, the future or the present of X. We treat some crucial examples and our main result is the existence of stochastic derivatives with respect to the present of X when X solves a stochastic differential equation driven by a fractional Brownian motion with Hurst index H > 1/2. We give explicit formulas.
引用
收藏
页码:1998 / 2020
页数:23
相关论文
共 50 条
  • [21] Maximum likelihood estimation in fractional diffusions
    Bishwal, Jaya P. N.
    PARAMETER ESTIMATION IN STOCHASTIC DIFFERENTIAL EQUATION, 2008, 1923 : 99 - 122
  • [22] Correlation structure of fractional Pearson diffusions
    Leonenko, Nikolai N.
    Meerschaert, Mark M.
    Sikorskii, Alla
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) : 737 - 745
  • [23] Optimal design problems with fractional diffusions
    Teixeira, Eduardo V.
    Teymurazyan, Rafayel
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 92 : 338 - 352
  • [24] Local linear estimator for fractional diffusions
    Han, Yuecai
    Zhang, Dingwen
    STOCHASTICS AND DYNAMICS, 2024, 24 (03)
  • [25] Generating Diffusions with Fractional Brownian Motion
    Martin Hairer
    Xue-Mei Li
    Communications in Mathematical Physics, 2022, 396 : 91 - 141
  • [26] Fractional Stochastic Van der Pol Oscillator with Piecewise Derivatives
    Kumar, Atul
    Alam, Khursheed
    Rahman, Mati ur
    Emadifar, Homan
    Arora, Geeta
    Hamoud, Ahmed A.
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [27] IMPULSIVE STOCHASTIC DIFFERENTIAL EQUATIONS INVOLVING HILFER FRACTIONAL DERIVATIVES
    Hachemi, Rahma Yasmina Moulay
    Guendouzi, Toufik
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2022, 17 (04): : 417 - 438
  • [28] APPROXIMATE PRICING OF DERIVATIVES UNDER FRACTIONAL STOCHASTIC VOLATILITY MODEL
    Han, Y.
    Zheng, X.
    ANZIAM JOURNAL, 2023, 65 (03): : 229 - 247
  • [29] Caputo fractional derivatives and inequalities via preinvex stochastic processes
    Rashid, Saima
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    FILOMAT, 2023, 37 (19) : 6569 - 6584
  • [30] A CHARACTERIZATION OF DIFFUSIONS BY THE STOCHASTIC CALCULUS OF VARIATIONS
    ROELLY, S
    ZESSIN, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1991, 313 (05): : 309 - 312