Stochastic derivatives for fractional diffusions

被引:4
|
作者
Darses, Sebastien
Nourdin, Ivan
机构
[1] Univ Franche Comte, Math Lab, F-25030 Besancon, France
[2] Univ Paris 06, LPMA, F-75252 Paris 05, France
来源
ANNALS OF PROBABILITY | 2007年 / 35卷 / 05期
关键词
stochastic derivatives; Nelson's derivative; fractional Brownian motion; fractional differential equation; Malliavin calculus;
D O I
10.1214/009117906000001169
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce some fundamental notions related to the so-called stochastic derivatives with respect to a given a-field Q. In our framework, we recall well-known results about Markov-Wiener diffusions. We then focus mainly on the case where X is a fractional diffusion and where 62 is the past, the future or the present of X. We treat some crucial examples and our main result is the existence of stochastic derivatives with respect to the present of X when X solves a stochastic differential equation driven by a fractional Brownian motion with Hurst index H > 1/2. We give explicit formulas.
引用
收藏
页码:1998 / 2020
页数:23
相关论文
共 50 条
  • [1] Fractional Pearson diffusions
    Leonenko, Nikolai N.
    Meerschaert, Mark M.
    Sikorskii, Alla
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 403 (02) : 532 - 546
  • [2] DIFFUSIONS AND STOCHASTIC GAMES
    MON, GR
    INTERNATIONAL JOURNAL OF CONTROL, 1971, 13 (05) : 853 - &
  • [3] Compensated fractional derivatives and stochastic evolution equations
    Garrido-Atienza, Maria J.
    Lu, Kening
    Schmalfuss, Bjoern
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (23-24) : 1037 - 1042
  • [4] The application of fractional derivatives in stochastic models driven by fractional Brownian motion
    Longjin, Lv
    Ren, Fu-Yao
    Qiu, Wei-Yuan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (21) : 4809 - 4818
  • [5] Stochastic mechanics of reciprocal diffusions
    Levy, BC
    Krener, AJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (02) : 769 - 802
  • [6] On the stochastic elasticity of variance diffusions
    Kim, Jeong-Hoon
    Yoon, Ji-Hun
    Lee, Jungwoo
    Choi, Sun-Yong
    ECONOMIC MODELLING, 2015, 51 : 263 - 268
  • [7] Stochastic areas of diffusions and applications
    Cui, Zhenyu
    Ma, Jingtang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (01) : 79 - 93
  • [8] Switching diffusions and stochastic resetting
    Bressloff, Paul C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (27)
  • [9] MEAN STOCHASTIC COMPARISON OF DIFFUSIONS
    HAJEK, B
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 68 (03): : 315 - 329
  • [10] STOCHASTIC DERIVATION OF REFLECTED DIFFUSIONS
    LEPINGLE, D
    NUALART, D
    SANZ, M
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1989, 25 (03): : 283 - 305