Grain boundary velocity and curvature are not correlated in Ni polycrystals

被引:94
作者
Bhattacharya, Aditi [1 ]
Shen, Yu-Feng [2 ,4 ]
Hefferan, Christopher M. [2 ,5 ]
Li, Shiu Fai [2 ,6 ]
Lind, Jonathan [2 ,7 ]
Suter, Robert M. [2 ]
Krill, Carl E., III [3 ]
Rohrer, Gregory S. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[3] Ulm Univ, Inst Funct Nanosyst, D-89081 Ulm, Germany
[4] Morgan Stanley, New York, NY 10036 USA
[5] RJ Lee Grp, Monroeville, PA 15146 USA
[6] Blue River Technol, Sunnyvale, CA 94086 USA
[7] Lawrence Livermore Natl Lab, Mat Engn Div, Livemore, CA 94550 USA
基金
美国国家科学基金会;
关键词
RAY-DIFFRACTION MICROSCOPY; GROWTH STAGNATION; MICROSTRUCTURE; MISORIENTATION; MOBILITY; SIMULATION; MIGRATION; NICKEL; SIZE; AL;
D O I
10.1126/science.abj3210
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Grain boundary velocity has been believed to be correlated to curvature, and this is an important relationship for modeling how polycrystalline materials coarsen during annealing. We determined the velocities and curvatures of approximately 52,000 grain boundaries in a nickel polycrystal using three-dimensional orientation maps measured by high-energy diffraction microscopy before and after annealing at 800 degrees C. Unexpectedly, the grain boundary velocities and curvatures were uncorrelated. Instead, we found strong correlations between the boundary velocity and the five macroscopic parameters that specify grain boundary crystallography. The sensitivity of the velocity to grain boundary crystallography might be the result of defect-mediated grain boundary migration or the anisotropy of the grain boundary energy. The absence of a correlation between velocity and curvature likely results from the constraints imposed by the grain boundary network and implies the need for a new model for grain boundary migration.
引用
收藏
页码:189 / +
页数:18
相关论文
共 43 条
[1]   The role of the interface stiffness tensor on grain boundary dynamics [J].
Abdeljawad, Fadi ;
Foiles, Stephen M. ;
Moore, Alexander P. ;
Hinkle, Adam R. ;
Barr, Christopher M. ;
Heckman, Nathan M. ;
Hattar, Khalid ;
Boyce, Brad L. .
ACTA MATERIALIA, 2018, 158 :440-453
[2]   DISCUSSION OF THE REPRESENTATION OF INTERCRYSTALLINE MISORIENTATION IN CUBIC MATERIALS [J].
ADAMS, BL ;
ZHAO, J ;
GRIMMER, H .
ACTA CRYSTALLOGRAPHICA SECTION A, 1990, 46 :620-622
[3]  
Beck P.A., 1952, Metal interfaces, P208
[4]   High-Energy X-Ray Diffraction Microscopy in Materials Science [J].
Bernier, Joel V. ;
Suter, Robert M. ;
Rollett, Anthony D. ;
Almer, Jonathan D. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 50, 2020, 2020, 50 :395-436
[5]   Three-dimensional observations of grain volume changes during annealing of polycrystalline Ni [J].
Bhattacharya, Aditi ;
Shen, Yu-Feng ;
Hefferan, Christopher M. ;
Li, Shiu Fai ;
Lind, Jonathan ;
Suter, Robert M. ;
Rohrer, Gregory S. .
ACTA MATERIALIA, 2019, 167 :40-50
[6]   Grain-boundary topological phase transitions [J].
Chen, Kongtao ;
Srolovitz, David J. ;
Han, Jian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (52) :33077-33083
[7]   On the temperature dependence of grain boundary mobility [J].
Chen, Kongtao ;
Han, Jian ;
Srolovitz, David J. .
ACTA MATERIALIA, 2020, 194 :412-421
[8]   Direct observation of grain rotations during coarsening of a semisolid Al-Cu alloy [J].
Dake, Jules M. ;
Oddershede, Jette ;
Sorensen, Henning O. ;
Werz, Thomas ;
Shatto, J. Cole ;
Uesugi, Kentaro ;
Schmidt, Soren ;
Krill, Carl E., III .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (41) :E5998-E6006
[9]   Bridging simulations and experiments in microstructure evolution [J].
Demirel, MC ;
Kuprat, AP ;
George, DC ;
Rollett, AD .
PHYSICAL REVIEW LETTERS, 2003, 90 (01) :4-016106
[10]   Impact of microstructure on local carrier lifetime in perovskite solar cells [J].
deQuilettes, Dane W. ;
Vorpahl, Sarah M. ;
Stranks, Samuel D. ;
Nagaoka, Hirokazu ;
Eperon, Giles E. ;
Ziffer, Mark E. ;
Snaith, Henry J. ;
Ginger, David S. .
SCIENCE, 2015, 348 (6235) :683-686