Performance Research and Fabrication of 1 310 nm Superluminescent Diodes with High Power

被引:0
作者
Wang Tuo [1 ,2 ]
Chen Hongmei [2 ]
Jia Huimin [1 ]
Yao Zhonghui [2 ]
Fang Dan [1 ]
Jiang Cheng [2 ]
Zhang Ziyang [2 ]
Li Kexue [1 ]
Tang Jilong [1 ]
Wei Zhipeng [1 ]
机构
[1] Changchun Univ Sci & Technol, Coll Sci, State Key Lab Hight Power Semincond Laser, Changchun 130022, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Jiangsu, Peoples R China
关键词
Superluminescent diode; J-type waveguide; Waveguide loss; Simulation analysis; Output performance; WAVE-GUIDES;
D O I
10.3788/gzxh2021.5006.0623002
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In order to optimize the performance of the 1 310 nm superluminescent diode, such as increase the output power of the device. In this simulation, the parameters of waveguide structure, and the heat dissipation for 1 310 nm superluminescent diode with the J-type waveguide have been investigated. The research results show that the waveguide etching depth, bending angle and thickness of the insulating layer were important for achieve high power output. Based on the research results, the superluminescent diode device structure and fabrication process were optimized, and J-type superluminescent diode with a ridge width of 5 mu m, a bending angle of 8 degrees, an etching depth of 1.7 mu m and an insulating layer thickness of 300 nm was prepared. The super-luminescent diode with 1.5 mm straight waveguide length has realized a high output power (42.2 mW) and wide bandwidth (10 nm) under 500 in A continuous-wave operation at room temperature.
引用
收藏
页数:9
相关论文
共 21 条
  • [1] AN Q, 2012, SEMICONDUCTORENCE TE, V27, P68
  • [2] AN Q, 2015, J SEMICOND, P72
  • [3] Superluminescent diodes of the 770-790-nm range based on semiconductor nanostructures with narrow quantum wells
    Anikeev, A. S.
    Bagaev, T. A.
    Il'chenko, S. N.
    Ladugin, M. A.
    Marmalyuk, A. A.
    Padalitsa, A. A.
    Pankratov, K. M.
    Shidlovskii, V. R.
    Yakubovich, S. D.
    [J]. QUANTUM ELECTRONICS, 2019, 49 (09) : 810 - 813
  • [4] Ultrahigh resolution spectral-domain optical coherence tomography at 1.3 μm using a broadband superluminescent diode light source
    Bayleyegn, Masreshaw D.
    Makhlouf, Houssine
    Crotti, Caroline
    Plamann, Karsten
    Dubois, Arnaud
    [J]. OPTICS COMMUNICATIONS, 2012, 285 (24) : 5564 - 5569
  • [5] Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media
    Chen, CK
    Berini, P
    Feng, DZ
    Tanev, S
    Tzolov, VP
    [J]. OPTICS EXPRESS, 2000, 7 (08): : 260 - 272
  • [6] GaAs-Based Superluminescent Light-Emitting Diodes with 290-nm Emission Bandwidth by Using Hybrid Quantum Well/Quantum Dot Structures
    Chen, Siming
    Li, Wei
    Zhang, Ziyang
    Childs, David
    Zhou, Kejia
    Orchard, Jonathan
    Kennedy, Ken
    Hugues, Maxime
    Clarke, Edmund
    Ross, Ian
    Wada, Osamu
    Hogg, Richard
    [J]. NANOSCALE RESEARCH LETTERS, 2015, 10
  • [7] MODE DISPERSION IN DIFFUSED CHANNEL WAVEGUIDES BY EFFECTIVE INDEX METHOD
    HOCKER, GB
    BURNS, WK
    [J]. APPLIED OPTICS, 1977, 16 (01): : 113 - 118
  • [8] Near-infrared and mid-infrared semiconductor broadband light emitters
    Hou, Chun-Cai
    Chen, Hong-Mei
    Zhang, Jin-Chuan
    Zhuo, Ning
    Huang, Yuan-Qing
    Hogg, Richard A.
    Childs, David T. D.
    Ning, Ji-Qiang
    Wang, Zhan-Guo
    Liu, Feng-Qi
    Zhang, Zi-Yang
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2018, 7 : 17170 - 17170
  • [9] High-Power and High-Efficiency 1.3-μm Superluminescent Diode With Flat-Top and Ultrawide Emission Bandwidth
    Khan, M. Z. M.
    Alhashim, H. H.
    Ng, T. K.
    Ooi, B. S.
    [J]. IEEE PHOTONICS JOURNAL, 2015, 7 (01):
  • [10] KURBATOV LN, 1971, SOV PHYS SEMICOND+, V4, P1739