Perfect packings with complete graphs minus an edge

被引:9
作者
Cooley, Oliver [1 ]
Kuhn, Daniela [1 ]
Osthus, Deryk [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
关键词
D O I
10.1016/j.ejc.2007.04.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K-r(-) denote the graph obtained From K-r by deleting one edge. We show that for every integer r >= 4 there exists an integer n(0) = n(0)(r) such that every graph G whose order n >= n(0) is divisible by r and whose minimum degree is at least (1 - 1/X-cr(K-r(-)))n contains a perfect K-r(-)-packing, i.e. a collection of disjoint copies of K-r(-) which covers all vertices of G. Here X-cr(K-r(-)) = r(r-2)/r-1 is the critical chromatic number of K-r(-). The bound on the minimum degree is best possible and confirms a conjecture of Kawarabayashi for large n. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2143 / 2155
页数:13
相关论文
共 12 条
[1]  
Abbasi S, 1998, THESIS RUTGERS U
[2]   H-factors in dense graphs [J].
Alon, N ;
Yuster, R .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 66 (02) :269-282
[3]  
COOLEY O, 2006, THESIS BIRMINGHAM U
[4]  
Corradi K., 1963, Acta Math. Acad. Sci. Hungar, V14, P423
[5]  
Enomoto H., 1987, C MATH SOC J BOLYAI, V52, P213
[6]  
Hajnal A, 1970, C MATH SOC J BOLYAI, VII, P601
[7]   K-4-factor in a graph [J].
Kawarabayashi, K .
JOURNAL OF GRAPH THEORY, 2002, 39 (02) :111-128
[8]   The Blow-up Lemma [J].
Komlós, J .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) :161-176
[9]   Tiling Turan theorems [J].
Komlós, J .
COMBINATORICA, 2000, 20 (02) :203-218
[10]   Proof of the Alon-Yuster conjecture [J].
Komlós, J ;
Sárközy, GN ;
Szemerédi, E .
DISCRETE MATHEMATICS, 2001, 235 (1-3) :255-269