Fuzzy variant of a statistical test point Kalman filter

被引:2
作者
Hudas, Gregory R.
Cheok, Ka. C.
Overholt, James L.
机构
[1] USA, RDECOM TARDEC, AMSRD TAR R, Warren, MI 48397 USA
[2] Oakland Univ, Dept Elect & Syst Engn, Rochester, MI 48309 USA
关键词
unscented transformation; fuzzy clustering; fuzzy c-means; Gustafson/Kessel; weighted least; squares; covariance; state estimation; parameter estimation;
D O I
10.1016/j.ijar.2006.06.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose the conceptual use of fuzzy clustering techniques as iterative spatial methods to estimate a posteriori statistics in place of the weighted averaging scheme of the Unscented Kalman filter. Specifically, instead of a linearization methodology involving the statistical linear regression of the process and measurement functions through some deterministically chosen set of test points (sigma points) contained within the "uncertainty region" around the state estimate, we present a variant of the Unscented transformation involving fuzzy clustering techniques which will be applied to the test points yielding "degrees of membership" in which Gaussian shapes can be "fit" using a least squares scheme. Implementation into the Kalman methodology will be shown along with simple state and parameter estimation examples. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:455 / 469
页数:15
相关论文
共 19 条
[1]  
[Anonymous], 2002, 95041 TR U N CAR DEP
[2]  
[Anonymous], Pattern Recognition With Fuzzy Objective Function Algorithms
[3]  
BROWN R. G., 2012, INTRO RANDOM SIGNALS
[4]  
GELB A, 2001, APPL OPTIMAL ESTIMAT, P182
[5]  
Gustafson D. E., 1979, Proceedings of the 1978 IEEE Conference on Decision and Control Including the 17th Symposium on Adaptive Processes, P761
[6]  
Hoppner F, 2000, FUZZY CLUSTER ANAL M
[7]  
HUDAS G, 2003, THESIS OAKLAND U
[8]  
Julier S., 1997, P AR 11 INT S AER DE
[9]  
Julier S., 1996, GEN METHOD APPROXIMA
[10]  
JULIER SJ, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P1628