Large gaps between consecutive prime numbers

被引:25
作者
Ford, Kevin [1 ]
Green, Ben [2 ]
Konyagin, Sergei [3 ]
Tao, Terence [4 ]
机构
[1] Univ Illinois, Urbana, IL USA
[2] Math Inst, 24-29 St Giles, Oxford OX1 3LB, England
[3] VA Steklov Math Inst, Moscow 117333, Russia
[4] Univ Calif Los Angeles, Los Angeles, CA USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
INVERSE THEOREM;
D O I
10.4007/annals.2016.183.3.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(X) denote the size of the largest gap between consecutive primes below X. Answering a question of Erdos, we show that G(X) >= f(X) log X log log X log log log log X/(log log log X)(2) where f(X) is a function tending to infinity with X. Our proof combines existing arguments with a random construction covering a set of primes by arithmetic progressions. As such, we rely on recent work on the existence and distribution of long arithmetic progressions consisting entirely of primes.
引用
收藏
页码:935 / 974
页数:40
相关论文
共 33 条
[1]  
[Anonymous], 2000, GRADUATE TEXTS MATH
[2]  
[Anonymous], 1938, J. London Math. Soc.
[3]  
[Anonymous], 1963, V, Proc. Edinburgh Math. Soc.
[4]  
[Anonymous], 1963, Arch. Math.
[5]   The difference between consecutive primes, II [J].
Baker, RC ;
Harman, G ;
Pintz, J .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 83 :532-562
[6]  
Balog A., 1990, PROGR MATH, V85, P47
[7]   A relative Szemer,di theorem [J].
Conlon, David ;
Fox, Jacob ;
Zhao, Yufei .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2015, 25 (03) :733-762
[8]  
Cramer H., 1936, ACTA ARITH, V2, P23, DOI DOI 10.4064/AA-2-1-23-46
[9]  
Cramer H., 1920, Arkiv for Mat. o. Fys, V15, P1
[10]  
de Bruijn N. G., 1951, Nederl. Acad. Wetensch. Proc. Ser. A., V54, P50