Simple shear of a compressible quasilinear viscoelastic material

被引:8
作者
De Pascalis, Riccardo [1 ]
Abrahams, I. David [1 ]
Parnell, William J. [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Quasilinear viscoelasticity; Hyperelasticity; Simple shear; Fung; Compressibility; COMPUTATIONAL ASPECTS; BEHAVIOR; MODEL; FORMULATION; LIGAMENTS; BRAIN;
D O I
10.1016/j.ijengsci.2014.11.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fung's theory of quasilinear viscoelasticity (QLV) was recently reappraised by the authors [Proc. R Soc. A 479 (2014), 201400581 in light of discussions in the literature of its apparent deficiencies. Due to the utility of the deformation of simple shear in a variety of applications, especially in experiment to deduce material properties, here QLV is employed to solve the problem of the simple shear of a nonlinear compressible quasilinear viscoelastic material. The effects of compressibility on the subsequent deformation and stress fields that result in this isochoric deformation are highlighted, and calculations of the dissipated energy associated with both a 'ramp' simple shear profile and oscillatory shear are given. (C) 2015 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:64 / 72
页数:9
相关论文
共 17 条
[1]  
Abu Al-Rub R., 2014, INT J DAMAGE MECH
[2]  
De Pascalis R., 2010, THESIS U P M CURIE
[3]   On nonlinear viscoelastic deformations: a reappraisal of Fung's quasi-linear viscoelastic model [J].
De Pascalis, Riccardo ;
Abrahams, I. David ;
Parnell, William J. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2166)
[4]   A quasi-linear viscoelastic constitutive equation for the brain: Application to hydrocephalus [J].
Drapaca, C. S. ;
Tenti, G. ;
Rohlf, K. ;
Sivaloganathan, S. .
JOURNAL OF ELASTICITY, 2006, 85 (01) :65-83
[5]  
Fung YC, 1981, BIOMECHANICS MECH PR
[6]   Quasi-static deformations of biological soft tissue [J].
Gilchrist, M. D. ;
Rashid, B. ;
Murphy, J. G. ;
Saccomandi, G. .
MATHEMATICS AND MECHANICS OF SOLIDS, 2013, 18 (06) :622-633
[7]   A single integral finite strain viscoelastic model of ligaments and tendons [J].
Johnson, GA ;
Livesay, GA ;
Woo, SLY ;
Rajagopal, KR .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1996, 118 (02) :221-226
[8]   COMPARISON OF SOME SIMPLE CONSTITUTIVE RELATIONS FOR SLIGHTLY COMPRESSIBLE RUBBER-LIKE MATERIALS [J].
LEVINSON, M ;
BURGESS, IW .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1971, 13 (06) :563-&
[9]   A physically based method to represent the thermo-mechanical behaviour of elastomers [J].
Lion, A .
ACTA MECHANICA, 1997, 123 (1-4) :1-25
[10]   An anisotropic visco-hyperelastic model for ligaments at finite strains.: Formulation and computational aspects [J].
Pena, E. ;
Calvo, B. ;
Martinez, M. A. ;
Doblare, M. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2007, 44 (3-4) :760-778