Novel metal organic frameworks derived nitrogen-doped porous carbon-covered Co3O4 nanoparticle composites as anode materials for efficient lithium storage

被引:6
作者
Yang, Zhipeng [1 ]
Chen, Xiudong [1 ,2 ]
Yan, Ping [1 ]
Zhan, Changchao [1 ]
Wang, Yawei [1 ]
Liu, Jin-Hang [1 ]
机构
[1] Jiujiang Univ, Jiangxi Prov Engn Res Ctr Ecol Chem Ind, Sch Chem & Chem Engn, Jiujiang 332005, Jiangxi, Peoples R China
[2] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Metal-organic frameworks; Lithium ion batteries; Anode materials; Nitrogen-doped porous carbon; Nanoparticles; ION BATTERIES; REVERSIBLE CAPACITY; PERFORMANCE; NANOTUBES;
D O I
10.1007/s11581-022-04645-w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal-organic frameworks (MOFs) with porous structures derived from transition metal oxides have been shown to be effective at storing lithium and converting it. During the course of this research, N-doped porous carbon-covered Co3O4 nanoparticle composites (Co3O4/NC-2) were manufactured by employing a novel cobalt-based MOF as a sacrificial template. The N-doped porous carbon coating improves the electrical conductivity while also reducing the path that Li+ takes to diffuse through the material. During this time, the composite's volume change that occurs during galvanostatic discharge/charge cycles is effectively buffered, and the cycling stability of the composite is improved. As a result, Co3O4/NC-2 has excellent lithium storage properties. After 100 cycles at 0.1 A g(-1), the reversible capacity of Co3O4/NC-2 is 884.2 mAh g(-1). Furthermore, Co3O4/NC-2 has an excellent rate capability. The reversible specific capacity can be recovered to 1124.6 mAh g(-1) by increasing the current density from 0.1 A g(-1) to 5 A g(-1) and back to 0.1 A g(-1). We design and synthesize a novel MOF as a sacrificial template in this paper to provide a simple method for fabricating highly electrochemical electrode materials.
引用
收藏
页码:4149 / 4158
页数:10
相关论文
共 43 条
[1]   Rational synthesis of metal-organic framework composites, hollow structures and their derived porous mixed metal oxide hollow structures [J].
Cai, Daoping ;
Liu, Bin ;
Wang, Dandan ;
Wang, Lingling ;
Liu, Yuan ;
Qu, Baihua ;
Duan, Xiaochuan ;
Li, Qiuhong ;
Wang, Taihong .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (01) :183-192
[2]   In Situ Self-Formed Nanosheet MoS3/Reduced Graphene Oxide Material Showing Superior Performance as a Lithium-Ion Battery Cathode [J].
Chang, Uijin ;
Lee, Juni Tae ;
Yun, Jin-Mun ;
Lee, Byeongyoung ;
Lee, Seung Woo ;
Joh, Han-Ik ;
Eom, KwangSup ;
Fuller, Thomas F. .
ACS NANO, 2019, 13 (02) :1490-1498
[3]   Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays [J].
Chao, Dongliang ;
Liang, Pei ;
Chen, Zhen ;
Bai, Linyi ;
Shen, He ;
Liu, Xiaoxu ;
Xia, Xinhui ;
Zhao, Yanli ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Shen, Ze Xiang .
ACS NANO, 2016, 10 (11) :10211-10219
[4]   A copper-clad lithiophilic current collector for dendrite-free lithium metal anodes [J].
Chen, Ke ;
Pathak, Rajesh ;
Gurung, Ashim ;
Reza, Khan M. ;
Ghimire, Nabin ;
Pokharel, Jyotshna ;
Baniya, Abiral ;
He, Wei ;
Wu, James J. ;
Qiao, Qiquan ;
Zhou, Yue .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (04) :1911-1919
[5]   Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes [J].
Chen, Ke ;
Pathak, Rajesh ;
Gurung, Ashim ;
Adhamash, Ezaldeen A. ;
Bahrami, Behzad ;
He, Qingquan ;
Qiao, Hui ;
Smirnova, Alevtina L. ;
Wu, James J. ;
Qiao, Qiquan ;
Zhou, Yue .
ENERGY STORAGE MATERIALS, 2019, 18 :389-396
[6]   NiO nanocrystals encapsulated into a nitrogen-doped porous carbon matrix as highly stable Li-ion battery anodes [J].
Chu, Kainian ;
Li, Zhiqiang ;
Xu, Shikai ;
Yao, Ge ;
Xu, Yang ;
Niu, Ping ;
Zheng, Fangcai .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 854
[7]   Large-Pore Apertures in a Series of Metal-Organic Frameworks [J].
Deng, Hexiang ;
Grunder, Sergio ;
Cordova, Kyle E. ;
Valente, Cory ;
Furukawa, Hiroyasu ;
Hmadeh, Mohamad ;
Gandara, Felipe ;
Whalley, Adam C. ;
Liu, Zheng ;
Asahina, Shunsuke ;
Kazumori, Hiroyoshi ;
O'Keeffe, Michael ;
Terasaki, Osamu ;
Stoddart, J. Fraser ;
Yaghi, Omar M. .
SCIENCE, 2012, 336 (6084) :1018-1023
[8]   Atomic Layer-by-Layer Co3O4/Graphene Composite for High Performance Lithium-Ion Batteries [J].
Dou, Yuhai ;
Xu, Jiantie ;
Ruan, Boyang ;
Liu, Qiannan ;
Pan, Yuede ;
Sun, Ziqi ;
Dou, Shi Xue .
ADVANCED ENERGY MATERIALS, 2016, 6 (08)
[9]   Facile synthesis of graphene-like carbon-coated Ni3S2 nanoparticles self-assembled on 3D dendritic nanostructure as high-performance anode materials of sodium-ion batteries [J].
Duan, Mingtao ;
Meng, Yanshuang ;
Zhang, Hongshuai ;
Zhao, Guixiang ;
Hu, Jian ;
Ren, Guofeng ;
Zhu, Fuliang .
IONICS, 2020, 26 (09) :4511-4522
[10]   Fluorine-doped porous SnO2@C nanosheets as a high performance anode material for lithium ion batteries [J].
Feng, Yefeng ;
Bai, Chen ;
Wu, Kaidan ;
Dong, Huafeng ;
Ke, Jin ;
Huang, Xiping ;
Xiong, Deping ;
He, Miao .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 843