Microfluidic surface-enhanced infrared spectroscopy with semiconductor plasmonics for the fingerprint region

被引:11
作者
Bomers, Mario [1 ]
Charlot, Benoit [1 ]
Barho, Franziska [1 ]
Chanuel, Antoine [1 ]
Mezy, Aude [2 ]
Cerutti, Laurent [1 ]
Gonzalez-Posada, Fernando [1 ]
Taliercio, Thierry [1 ]
机构
[1] Univ Montpellier, CNRS, IES, Montpellier, France
[2] SiKEMIA, F-34095 Montpellier, France
基金
欧盟地平线“2020”;
关键词
ABSORPTION SPECTROSCOPY; RAMAN; NANOANTENNAS; MONOLAYERS; SILICON; INAS; FLOW;
D O I
10.1039/c9re00350a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The combination of semiconductor plasmonics with microfluidics allows surface-enhanced infrared spectroscopy of molecules in the flow regime. Exploiting semiconductor plasmonics enables surface-enhanced mid-IR spectroscopy from 4 mu m to 20 mu m and accesses the so-called molecular fingerprint region from 6.7 mu m to 20 mu m (1500-500 cm(-1)). Besides addressing the whole fingerprint region and allowing the identification of molecules by database comparison, the III-V semiconductor material class allows potentially an integration of semiconductor-based IR-sources, IR-detectors and IR-resonators on-chip. Miniaturized plasmonic enhanced microfluidic mid-IR spectrometry has great potential to analyse and identify minute amounts of molecules in the flow regime. This work describes technological processing to combine semiconductor plasmonics and microfluidics. Two proof-of-concept prototypes were experimentally realized and subsequently tested. Measured mid-IR spectra allow to clearly distinguish ethanol and water by their respective IR-absorption characteristics when inserted into the microfluidic flow chamber. Additionally, a semiconductor surface plasmon resonance shift can be observed according to the inserted solvent. Finally, the formation of a self-assembled monolayer under flow conditions is demonstrated by an observable mid-IR surface plasmon resonance shift of 6 +/- 1 cm(-1) (140 +/- 23 nm).
引用
收藏
页码:124 / 135
页数:12
相关论文
共 51 条
[1]   In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas [J].
Adato, Ronen ;
Altug, Hatice .
NATURE COMMUNICATIONS, 2013, 4
[2]  
Angelescu DE, 2011, ARTECH HSE INTEGR MI, P1
[3]  
Aroca R., 2006, SURFACE ENHANCED VIB, P233
[4]   Surface-enhanced infrared absorption spectroscopy (SEIRAS) to probe monolayers of membrane proteins [J].
Ataka, Kenichi ;
Stripp, Sven Timo ;
Heberle, Joachim .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2013, 1828 (10) :2283-2293
[5]   Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates [J].
Baldassarre, Leonetta ;
Sakat, Emilie ;
Frigerio, Jacopo ;
Samarelli, Antonio ;
Gallacher, Kevin ;
Calandrini, Eugenio ;
Isella, Giovanni ;
Paul, Douglas J. ;
Ortolani, Michele ;
Biagioni, Paolo .
NANO LETTERS, 2015, 15 (11) :7225-7231
[6]   Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin [J].
Barho, Franziska B. ;
Gonzalez-Posada, Fernando ;
Milla, Maria-Jose ;
Bomers, Mario ;
Cerutti, Laurent ;
Tournie, Eric ;
Taliercio, Thierry .
NANOPHOTONICS, 2018, 7 (02) :507-516
[7]   All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range [J].
Barho, Franziska B. ;
Gonzalez-Posada, Fernando ;
Milla-Rodrigo, Maria-Jose ;
Bomers, Mario ;
Cerutti, Laurent ;
Taliercio, Thierry .
OPTICS EXPRESS, 2016, 24 (14) :16175-16190
[8]   Mid-IR plasmonic compound with gallium oxide toplayer formed by GaSb oxidation in water [J].
Bomers, Mario ;
Di Paola, Davide Maria ;
Cerutti, Laurent ;
Michel, Thierry ;
Arinero, Richard ;
Tournie, Eric ;
Patane, Amalia ;
Taliercio, Thierry .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2018, 33 (09)
[9]   Phosphonate monolayers on InAsSb and GaSb surfaces for mid-IR plasmonics [J].
Bomers, Mario ;
Mezy, Aude ;
Cerutti, Laurent ;
Barho, Franziska ;
Flores, Fernando Gonzalez-Posada ;
Tournie, Eric ;
Taliercio, Thierry .
APPLIED SURFACE SCIENCE, 2018, 451 :241-249
[10]   FT-IR Spectroscopic Imaging of Reactions in Multiphase Flow in Microfluidic Channels [J].
Chan, K. L. Andrew ;
Kazarian, Sergei G. .
ANALYTICAL CHEMISTRY, 2012, 84 (09) :4052-4056