Asymptotic properties of a HIV-1 infection model with time delay

被引:173
作者
Li, Dan [1 ]
Ma, Wanbiao [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Appl Sci, Dept Math & Mech, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
HIV-1; infection; time delay; transcendental equation; asymptotic stability;
D O I
10.1016/j.jmaa.2007.02.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on some important biological meanings, a class of more general HIV-1 infection models with time delay is proposed in the paper. In the HIV-1 infection model, time delay is used to describe the time between infection of uninfected target cells and the emission of viral particles on a cellular level as proposed by Herz et a]. [A.V.M. Herz, S. Bonhoeffer, R.M. Anderson, R.M. May, M.A. Nowak, Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay, Proc. Natl. Acad. Sci. USA 93 (1996) 7247-7251]. Then, the effect of time delay on stability of the equilibria of the HIV-1 infection model has been studied and sufficient criteria for local asymptotic stability of the infected equilibrium and global asymptotic stability of the viral free equilibrium are given. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:683 / 691
页数:9
相关论文
共 16 条
[1]   MATHEMATICAL AND STATISTICAL STUDIES OF THE EPIDEMIOLOGY OF HIV [J].
ANDERSON, RM .
AIDS, 1989, 3 (06) :333-346
[2]  
Chen L. S., 2002, MATH MODELS METHODS
[3]   A delay-differential equation model of HIV infection of CD4+ T-cells [J].
Culshaw, RV ;
Ruan, SG .
MATHEMATICAL BIOSCIENCES, 2000, 165 (01) :27-39
[4]   A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay [J].
Culshaw, RV ;
Ruan, SG ;
Webb, G .
JOURNAL OF MATHEMATICAL BIOLOGY, 2003, 46 (05) :425-444
[5]  
Hale JK, 1997, THEORY FUNCTIONAL DI
[6]   Viral dynamics in vivo: Limitations on estimates of intracellular delay and virus decay [J].
Herz, AVM ;
Bonhoeffer, S ;
Anderson, RM ;
May, RM ;
Nowak, MA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (14) :7247-7251
[7]  
Kajiwara T, 2004, DISCRETE CONT DYN-B, V4, P615
[8]  
KAJIWARA T, 2005, SURI KAISEKI KENKYUJ, V1432, P172
[9]  
Kuang Y., 1993, DELAY DIFFERENTIAL E
[10]   Nonlinear oscillations in models of immune responses to persistent viruses [J].
Liu, WM .
THEORETICAL POPULATION BIOLOGY, 1997, 52 (03) :224-230