Isochronicity into a family of time-reversible cubic vector fields

被引:35
作者
Chavarriga, J [1 ]
García, IA [1 ]
Giné, J [1 ]
机构
[1] Univ Lleida, Dept Matemat, Lleida 2500, Spain
关键词
isochronicity; center-focus problem; nonlinear differential equations;
D O I
10.1016/S0096-3003(99)00267-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study necessary and sufficient conditions for the existence of isochronous centers into a family of cubic time-reversible systems. This class of reversible systems is characterized by the existence of an inverse integrating factor which is a certain power of an invariant straight line. (C) 2001 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:129 / 145
页数:17
相关论文
共 22 条
[1]  
[Anonymous], DIFF EQUAT
[2]  
CAIRO L, IN PRESS COMPUT MATH
[3]   Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomials [J].
Chavarriga, J ;
Giné, J ;
García, IA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 126 (1-2) :351-368
[4]   Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial [J].
Chavarriga, J ;
Giné, J ;
García, IA .
BULLETIN DES SCIENCES MATHEMATIQUES, 1999, 123 (02) :77-96
[5]   On the integrability of two-dimensional flows [J].
Chavarriga, J ;
Giacomini, H ;
Giné, J ;
Llibre, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (01) :163-182
[6]  
Chavarriga J., 1994, APPL MATH, V22, P285
[7]  
CHAVARRIGA J, 1999, LECT NOTE PHYS, V518, P255
[8]  
Chavarriga J., 1999, DIFF EQUAT, V7, P221
[9]   BIFURCATION OF CRITICAL PERIODS FOR PLANE VECTOR-FIELDS [J].
CHICONE, C ;
JACOBS, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 312 (02) :433-486
[10]   Isochronous centers in planar polynomial systems [J].
Christopher, CJ ;
Devlin, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (01) :162-177