Composites Based on Lithium Titanate with Carbon Nanomaterials as Anodes for Lithium-Ion Batteries

被引:1
作者
Stenina, I. A. [1 ]
Kulova, T. L. [2 ]
Desyatov, A., V [3 ]
Yaroslavtsev, A. B. [1 ]
机构
[1] Russian Acad Sci, Kurnakov Inst Gen & Inorgan Chem, Moscow, Russia
[2] Russian Acad Sci, Frumkin Inst Phys Chem & Electrochem, Moscow, Russia
[3] Mendeleev Univ Chem Technol, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
lithium titanate; carbon nanotubes; composites; anode materials; lithium-ion batteries; ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIALS; CATHODE MATERIALS; RATE PERFORMANCE; HIGH-ENERGY; LI4TI5O12; GRAPHENE; NANOCOMPOSITES; PROGRESS;
D O I
10.1134/S1023193522080110
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium titanate composites with conducting additives are synthesized by the sol-gel method. As the conducting additives, carbon nanotubes (CNTs)-plain and heterosubstituted, graphene-like nanoflakes (CNFs), and the carbon coating formed by sucrose (S) pyrolysis are used. The introduction of carbon nanotubes considerably increases the reversible discharge capacity of composites including the case of high current densities. This occurs as a result of the formation of a three-dimensional network which sustains the fast transport of lithium ions and electrons between the particles of the anode material. Thus, at the current density of 200, 800, 1600, and 3200 mA/g, the reversible discharge capacity of the Li4Ti5O12/C/CNT is found to be 130, 107, 94, and 71 mA h/g, respectively. The use of CNFs as the conducting additive fails to considerably improve the properties of the anode material.
引用
收藏
页码:658 / 666
页数:9
相关论文
共 60 条
[1]   A high-power and fast charging Li-ion battery with outstanding cycle-life [J].
Agostini, M. ;
Brutti, S. ;
Navarra, M. A. ;
Panero, S. ;
Reale, P. ;
Matic, A. ;
Scrosati, B. .
SCIENTIFIC REPORTS, 2017, 7
[2]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[4]   Lithium titanate as anode material for lithium ion batteries: Synthesis, post-treatment and its electrochemical response [J].
Chauque, S. ;
Oliva, F. Y. ;
Visintin, A. ;
Barraco, D. ;
Leiva, E. P. M. ;
Camara, O. R. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2017, 799 :142-155
[5]   High rate performance of the carbon encapsulated Li4Ti5O12 for lithium ion battery [J].
Cheng, Qi ;
Tang, Shun ;
Liang, Jiyuan ;
Zhao, Jinxing ;
Lan, Qian ;
Liu, Chang ;
Cao, Yuan-Cheng .
RESULTS IN PHYSICS, 2017, 7 :810-812
[6]   Novel strategy to improve the Li-storage performance of micro silicon anodes [J].
Choi, Min-Jae ;
Xiao, Ying ;
Hwang, Jang-Yeon ;
Belharouak, Ilias ;
Sun, Yang-Kook .
JOURNAL OF POWER SOURCES, 2017, 348 :302-310
[7]   Single-ion conducting gel polymer electrolytes: design, preparation and application [J].
Deng, Kuirong ;
Zeng, Qingguang ;
Wang, Da ;
Liu, Zheng ;
Qiu, Zhenping ;
Zhang, Yangfan ;
Xiao, Min ;
Meng, Yuezhong .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (04) :1557-1577
[8]   LiFePO4/C nanocomposites for lithium-ion batteries [J].
Eftekhari, Ali .
JOURNAL OF POWER SOURCES, 2017, 343 :395-411
[9]   Recent Advances in Sodium-Ion Battery Materials [J].
Fang, Yongjin ;
Xiao, Lifen ;
Chen, Zhongxue ;
Ai, Xinping ;
Cao, Yuliang ;
Yang, Hanxi .
ELECTROCHEMICAL ENERGY REVIEWS, 2018, 1 (03) :294-323
[10]   Surface-Engineered Li4Ti5O12 Nanostructures for High-Power Li-Ion Batteries [J].
Gangaja, Binitha ;
Nair, Shantikumar ;
Santhanagopalan, Dhamodaran .
NANO-MICRO LETTERS, 2020, 12 (01)