Mixed exterior Laplace's problem

被引:22
作者
Amrouche, Cherif [1 ]
Bonzom, Florian [1 ]
机构
[1] Univ Pau & Pays Adour, IPRA, CNRS, Lab Math Appl,UMR 5142, F-64000 Pau, France
关键词
weighted Sobolev spaces; Laplacian; mixed boundary conditions; Poincare type inequality;
D O I
10.1016/j.jmaa.2007.04.077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [C. Amrouche, V. Girault, J. Giroire, Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator. An approach in weighted Sobolev spaces, J. Math. Pures Appl. 76 (1997) 55-81], authors study Dirichlet and Neumann problems for the Laplace operator in exterior domains of R-n. This paper extends this study to the resolution of a mixed exterior Laplace's problem. Here, we give existence, unicity and regularity results in L-P's theory with 1 < p < infinity, in weighted Sobolev spaces. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:124 / 140
页数:17
相关论文
共 8 条
  • [1] Adams A, 2003, SOBOLEV SPACES
  • [2] Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator an approach in weighted Sobolev spaces
    Amrouche, C
    Girault, V
    Giroire, J
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (01): : 55 - 81
  • [3] AMROUCHE C, 2007, J MATH FLUID MECH
  • [4] AMROUCHE C, 1994, J MATH PURE APPL, V73, P576
  • [5] Deny J., 1954, Annales de l'institut Fourier, tome, V5, P305, DOI [10.5802/aif.55, DOI 10.5802/AIF.55]
  • [6] GIROIRE J, 1987, THESIS U PIERRE
  • [7] LIONS JL, 1962, ANN SCUOLA NORM SUP, V16, P1
  • [8] Necas J., 1967, Les methodes directes en theorie des equations elliptiques